
Geometry of the Loss Landscape in Overparameterized Neural Networks:
Symmetries and Invariances
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Abstract

We study how permutation symmetries in over-
parameterized multi-layer neural networks gen-
erate ‘symmetry-induced’ critical points. As-
suming a network with L layers of minimal
widths r∗1 , . . . , r

∗
L−1 reaches a zero-loss mini-

mum at r∗1 ! · · · r∗L−1! isolated points that are per-
mutations of one another, we show that adding
one extra neuron to each layer is sufficient to
connect all these previously discrete minima into
a single manifold. For a two-layer overparame-
terized network of width r∗ + h =: m we ex-
plicitly describe the manifold of global minima:
it consists of T (r∗,m) affine subspaces of di-
mension at least h that are connected to one an-
other. For a network of width m, we identify the
number G(r,m) of affine subspaces containing
only symmetry-induced critical points that are re-
lated to the critical points of a smaller network
of width r < r∗. Via a combinatorial analysis,
we derive closed-form formulas for T and G and
show that the number of symmetry-induced crit-
ical subspaces dominates the number of affine
subspaces forming the global minima manifold
in the mildly overparameterized regime (small h)
and vice versa in the vastly overparameterized
regime (h � r∗). Our results provide new in-
sights into the minimization of the non-convex
loss function of overparameterized neural net-
works.
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1. Introduction
Neural network landscapes were traditionally thought of
as highly non-convex landscapes, where non-global critical
points may harm gradient-descent by slowing it down (due
to saddles) or making it stop in local minima. Earlier works
have argued in favor of a proliferation of saddles in high-
dimensional neural network landscapes through an analogy
with random error functions (Dauphin et al., 2014). On the
other hand, practical neural network landscapes are found
to exhibit surprising properties, such as the connectivity of
global minima (Draxler et al., 2018; Garipov et al., 2018)
and the convergence to a global minimum in the so-called
overparameterized regime (Jacot et al., 2018), thereby rul-
ing out proliferating saddles as a problem in this regime.
Yet, in mildly overparameterized networks, gradient de-
scent may find a global minimum only for a small frac-
tion of random initializations (Sagun et al., 2014; Chizat &
Bach, 2018; Frankle & Carbin, 2018).

In this work, we study the width-dependent scaling of the
number of symmetry-induced critical points and the con-
nectivity of global minima by exploiting the permutation
symmetry and further invariances of the network parame-
terization. The permutation symmetry introduces an invari-
ance to a permutation in parameterization that is character-
istic for many machine learning models beyond neural net-
works, such as mixture models, multiple kernel learning, or
matrix factorization.

Further invariances in a neural network of width m induce
equal loss manifolds such that all points in the manifold are
equivalent to a single point in a narrower network of width
r < m. The mapping approach from a point in parameter
space of the narrower network to a parameter manifold of
the full network is particularly useful for the study of criti-
cal points as critical points of the narrow network turn into
symmetry-induced critical subspaces of the full one. In par-
ticular, a global minimum of the narrow network turns into
a collection of global minima subspaces that are connected
to one another.
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Figure 1. Graph of (a) a minimal network of width 4 (teacher) and (b) a mildly overparameterized student network of width 5. (c) With
50 random initializations, mildly overparameterized networks (blue) find a global minimum for only a fraction of initializations, whereas
vastly overparameterized networks (red, width 45) consistently find a global minimum. (d) Graph of student network with three hidden
layer learning from a teacher with widths 4 − 4 − 4. (e) Vastly overparameterized networks (red) consistently find a global minimum
whereas mildly overparameterized networks (blue) typically do not.

1.1. Main Contributions

1. Suppose an L-layer Artificial Neural Network (ANN)
with hidden layer widths r∗1 , . . . , r

∗
L−1 reaches a

unique (up to permutation) zero-loss global minimum
(we call such a network minimal if it cannot achieve
zero loss if any neuron is removed). The permutation
symmetries give rise to r∗1 ! · · · r∗L−1! equivalent dis-
crete global minima. We show that adding one neuron
to each layer is sufficient to connect these global min-
ima into a single zero-loss manifold.

2. For a two-layer overparameterized network of width
m = r∗ + h, we describe the geometry of the global
minima manifold precisely: it consists of a union
of a number T (r∗,m) of affine subspaces of dimen-
sion ≥ h and it is connected. Furthermore, we show
that the global minima manifold contains all the zero-
loss points for smooth activation functions satisfying
a technical condition and in the presence of infinitely
many data points with full support of the input space.

3. The symmetries of the network generate symmetry-
induced critical points, such as saddle points, which
may prevent the convergence to a global minimum
(see Figure 1). We find a surprising scaling rela-
tion between the number of subspaces formed by the
symmetry-induced critical points and the number of
subspaces making up the global minima:

• When the number of additional neurons satisfies
h � r∗ (i.e. at the beginning of the overparam-
eterized regime), the number of subspaces that
make up the global minima manifold is much
smaller than the number of subspaces that make
up the symmetry-induced critical points. In this
sense, there is a proliferation of saddles and the
global minima manifold is ‘tiny’.

• Conversely, when h� r∗ (i.e. we are far into or
within the overparameterized regime), the num-
ber of subspaces that make up the global minima

manifold is much greater than the number of sub-
spaces that make up the symmetry-induced (non-
global) critical points. In this sense the global
minima manifold is ‘huge’.

4. One may worry that, by adding h neurons, a saddle
of a network of width r could transform into a local
minimum. However, we show that this is not the case
and a saddle point in the smaller network transforms
into symmetry-induced saddle points.

1.2. Related Work

A number of recent works have explored the typical path
taken by a gradient-based optimizer. For very wide ANNs,
the gradient flow converges to a global minimum in spite
of the non-convexity of the loss (Jacot et al., 2018; Du
et al., 2018; Chizat & Bach, 2018; Arora et al., 2019; Du
et al., 2019; Lee et al., 2019a; 2020). First-order gradi-
ent algorithms provably escape strict saddles (Jin et al.,
2017; Lee et al., 2019b), although they can face an expo-
nential slowdown around these saddles (Du et al., 2017).
For pruned ANNs, the training with typical (random) ini-
tialization does not reach any global minimum, in spite of
their presence in the landscape (Frankle & Carbin, 2018).

Another body of work focuses on the geometric investiga-
tion of neural network landscapes. Dauphin et al. (2014)
suggested a proliferation of saddles in ANN landscapes
through an analogy with high-dimensional Gaussian Pro-
cesses. Other models have been proposed to understand the
general structure of ANN landscapes inspired by statisti-
cal physics (Geiger et al., 2019), and via high-dimensional
wedges (Fort & Jastrzebski, 2019). These model-based em-
pirical works focus mainly on the Hessian spectrum at the
critical points.

Another line of work suggests that global minima found
by stochastic gradient descent are connected (i.e. there is
a path linking arbitrary two minima along which the loss
increases only negligibly) via simply parameterized low-
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loss curves (Draxler et al., 2018; Garipov et al., 2018) or
line segments (Sagun et al., 2017; Frankle et al., 2020; Fort
et al., 2020). Theoretical work limited to ReLU-type ac-
tivation functions, showed that in overparameterized net-
works, all global minima lie in a connected manifold (Free-
man & Bruna, 2016; Nguyen, 2019), however without giv-
ing a geometrical description of this manifold. Cooper
(2020) studied the geometry of a subset of the manifolds
of critical points. Kuditipudi et al. (2019) showed that the
global minima for ReLU networks, for which half of the
neurons can be dropped without incurring a significant in-
crease in loss, are connected via piecewise linear paths of
minimal cost.

In this paper, we show that adding or removing a single
neuron radically changes the connectedness without any
change in loss. We are the first to prove the connectivity of
the global minima manifold for continuously differentiable
activation functions. The focus on symmetries in our work
is similar to that of (Fukumizu & Amari, 2000; Brea et al.,
2019; Fukumizu et al., 2019) regarding the critical points
coming from neuron replications. In an orthogonal direc-
tion, Kunin et al. (2020); Głuch & Urbanke (2021) present
a catalog of symmetries appearing in deep networks, which
however does not include the permutation symmetry. To
the best of our knowledge, this work is the first to study the
scaling of the number of critical points in ANN landscapes
as a function of the overparameterization amount. A key
challenge to overcome is the numerous equivalent arrange-
ments of neurons inside the network.

Notation. For m ≥ 1, set [m] = {1, . . . ,m} and let Sm
denote the symmetric group on m symbols, i.e. the set of
permutations of [m]. For a permutation π ∈ Sm and D ≥
1, the mapPπ : RDm → RDm permutes the units ϑi ∈ RD
of a point θθθ = (ϑ1, . . . , ϑm) according to π, i.e. Pπθθθ =
(ϑπ(1), . . . , ϑπ(m)); we sometimes use θθθπ := Pπθθθ.

2. Symmetric Losses
Numerous machine learning models involve permutation-
symmetric parameterizations: mixture models, matrix fac-
torization, and neural networks. In this section, we abstract
away the particular parameterization of these models and
focus on the implications of permutation symmetry on the
gradient flow. In particular, the discussion here is general
and applies to ANNs which is the main focus of this paper.

Definition 2.1. A loss function Lm : RDm → R is a sym-
metric loss1 on m units if it is a C1 function and if for any
π ∈ Sm and any θθθ = (ϑ1, ϑ2, . . . , ϑm) with ϑi ∈ RD, we
have

Lm(θθθ) = Lm(Pπθθθ).
1When the units are 1-dimensional, symmetric losses are sym-

metric functions (Kung et al., 2009; Sagan, 2013).

Figure 2. No gradient pointing outside of a symmetry subspace.
The gradient flow of a permutation-symmetric loss L(w1, w2) =
log( 1

2
((w1 +w2− 3)2 + (w1w2− 2)2) + 1). Red: permutation-

symmetric global minima, purple: saddle, dashed line: the sym-
metry subspace.

The term unit may refer to a Gaussian vector in the context
of Gaussian mixture models, to a factor in the context of
matrix factorization, or to a neuron in the context of neu-
ral networks. The symmetry subspaces are defined by the
constraint that at least two units are identical:

Definition 2.2. Let i1, . . . , ik ∈ [m] be distinct indices.
The symmetry subspaceHi1,...,ik is defined as

Hi1,...,ik := {(ϑ1, . . . , ϑm) ∈ RDm : ϑi1 = · · · = ϑik}.

As each constraint ϑi = ϑj suppresses D degrees of free-
dom, we have dim(Hi1,...,ik) = D(m−k+1). The largest
symmetry subspaces are Hi,j’s: any other symmetry sub-
space is the intersection of such subspaces.

Let ρρρ : R≥0 → RDm denote the gradient flow under a
symmetric loss

ρ̇ρρ(t) = −∇Lm(ρρρ(t)) (1)

for t ≥ 0 and for a given initialization ρρρ(0). In Figure
2, we observe that the gradient on the symmetry subspace
is tangent to it. In general, the gradient components of a
symmetry subspace pointing to neighbor regions cancel out
due to permutation symmetry.

Lemma 2.1. Let Lm : RDm → R be a symmetric loss on
m units thus a C1 function and let ρρρ : R≥0 → RDm be its
gradient flow. If ρρρ(0) ∈ Hi1,...,ik , the gradient flow stays
inside the symmetry subspace, i.e. ρρρ(t) ∈ Hi1,...,ik for all
t > 0. If ρρρ(0) /∈ Hi,j for all i 6= j ∈ [m], that is outside
of all symmetry subspaces, the gradient flow does not visit
any symmetry subspace in finite time.

Remark 2.1. Lemma 2.1 does not exclude the following
scenario: if there is a critical point on the symmetry sub-
space that is attractive in some directions orthogonal to the
symmetry subspace, the gradient flow can reach it in infi-
nite time (i.e. at convergence).
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Figure 3. Left: Parameters θθθr of an irreducible point in a network
of r neurons with wi 6= wj for all i 6= j and ai 6= 0 for all i.
Right: example of a reducible point in Γs(θθθ

r) in an expanded
network of m > r neurons. The incoming weight vector of the
first neuron is replicated k1 times, the second one only once, etc.

3. Foundations: Invariances in 2-Layer ANNs
In this section, we discuss the implications of the permu-
tation symmetry for the ANN landscapes and identify fur-
ther invariances in network function parameterization. This
approach will allow us to describe the precise geometry
of the global minima manifold (Subsection 4.1) and the
symmetry-induced critical points (Subsection 4.2) in over-
parameterized ANNs.

Let f (2) : Rdin → Rdout be a two-layer ANN of width m

f (2)(x|θθθ) =

m∑
i=1

aiσ(wi · x)

where θθθ = (w1, . . . , wm, a1, . . . , am) is anm-neuron point
in the parameter space RDm with wi ∈ Rdin and ai ∈ Rdout

so that D = din + dout and σ : R → R is a C1 activation
function with σ(x) 6= 0 for all x ∈ R.2 Sometimes, we will
write θθθm := θθθ to emphasize the number of neurons.

The training dataset of size N is denoted by Trn =
{(xk, yk)}Nk=1 where xk ∈ Rdin , yk ∈ Rdout . The training
loss Lm : RDm → R is

Lm(θθθ) =
1

N

∑
(x,y)∈Trn

c(f (2)(x|θθθ), y) (2)

where c : Rdout × Rdout → [0,+∞) is a single-sample loss
that is C1 in its first component and c(ŷ, y) = 0 if and only
if ŷ = y, such as the least-squares loss or the logistic loss.

Since f (2)(x|θθθ) is invariant under the permutation of neu-
rons ϑi := [wi, ai] ∈ RD, the concatenation of the incom-
ing and outgoing weight vectors, and both σ and c are C1,
Lm is a symmetric loss (Def. 2.1). Therefore the symme-
try subspaces ϑi = ϑj are invariant under the gradient flow
(Lemma 2.1). ANN functions exhibit further invariances:

2We exclude homogenous activation functions, such as ReLU
and linear function (for linear networks), where the scaling invari-
ance should also be considered.

Definition 3.1. We call an m-neuron point θθθm irreducible
if it hasm distinct incoming weight vectors wi, and no zero
outgoing weight vector, i.e. ai 6= 0 for all i ∈ [m]. Other-
wise we say that θθθm is reducible.

Any reducible point θθθm is equivalent to a point θθθm−1 with
(m − 1)-neurons in that they produce the same function
f (2)(x|θθθm) = f (2)(x|θθθm−1) where θθθm−1 is

1. (w2, w3, . . . , wm, a1 + a2, a3, . . . , am) if w1 = w2,

2. (w2, w3, . . . , wm, a2, a3, . . . , am) if a1 = 0.

Note that because of permutation symmetry, the above re-
ductions hold whenever two incoming weight vectors are
equal, i.e. wi = wj , or any one of the outgoing vectors
is zero ai = 0. Moreover, if θθθm−1 is also reducible, we
can continue dropping neurons as above until we find an
irreducible point θθθr. Equivalently (going in the opposite
direction), an irreducible r-neuron point

θθθr = (w1, . . . , wr, a1, . . . , ar)

yields an affine subspace of equal loss points in a network
with width m ≥ r (see Figure 3):

Definition 3.2. For r ≥ 1, j ≥ 0 with r + j ≤ m, let
s = (k1, ..., kr, b1, ..., bj) be an (r + j)-tuple of integers
such that sum(s) := k1 + ... + kr + b1 + ... + bj = m
with ki ≥ 1 and bi ≥ 0. The affine subspace Γs(θθθ

r) of an
irreducible point θθθr is

{(w1, ..., w1︸ ︷︷ ︸
k1

, ..., wr, ..., wr︸ ︷︷ ︸
kr

, w′1, ..., w
′
1︸ ︷︷ ︸

b1

, ..., w′j , ..., w
′
j︸ ︷︷ ︸

bj

,

a11, ..., a
k1
1 , ..., a

1
r, ..., a

kr
r , α

1
1, ..., α

b1
1 , ..., α

1
j , ..., α

bj
j ) :

where
kt∑
i=1

ait = at for t ∈ [r] and
bt∑
i=1

αit = 0 for t ∈ [j]}.

(3)

Note that all θθθm ∈ Γs(θθθ
r) implement the same function:

f (2)(x|θθθm) =

r∑
t=1

kt∑
i=1

aitσ(wt · x) +

j∑
t=1

bt∑
i=1

αitσ(w′t · x)

= f (2)(x|θθθr).

Neurons with incoming weight vectors w′ and outgoing
weight vectors adding up to zero are called in the following
‘zero-type’ neurons. Moreover, the network function re-
mains invariant under any permutation of neurons in Def-
inition 3.2. Each permutation defines another affine sub-
space

PπΓs(θθθ
r) := {Pπθθθm : θθθm ∈ Γs(θθθ

r) and π ∈ Sm}
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<latexit sha1_base64="C4nN19m7TVbF1kFYnOT3Arp1S/w=">AAAB73icbVBNS8NAEJ34WetX1aOXYBE8laQK9ljwoMcK9gPaUCbbTbt0dxN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZemHCmjed9O2vrG5tb24Wd4u7e/sFh6ei4peNUEdokMY9VJ0RNOZO0aZjhtJMoiiLktB2Ob2Z++4kqzWL5YCYJDQQOJYsYQWOlTu8WhcC+1y+VvYo3h7tK/JyUIUejX/rqDWKSCioN4ah11/cSE2SoDCOcTou9VNMEyRiHtGupREF1kM3vnbrnVhm4UaxsSePO1d8TGQqtJyK0nQLNSC97M/E/r5uaqBZkTCapoZIsFkUpd03szp53B0xRYvjEEiSK2VtdMkKFxNiIijYEf/nlVdKqVvzLSvX+qlyv5XEU4BTO4AJ8uIY63EEDmkCAwzO8wpvz6Lw4787HonXNyWdO4A+czx97vY+S</latexit>

P(1,2)�0
<latexit sha1_base64="ZN5JyyNXY+BNrnUimU5DW9wn11w=">AAACBHicbVDLSsNAFJ3UV62vqMtuBotQQUpSBbssuNBlBfuAtoSb6aQdOpOEmYlQQhZu/BU3LhRx60e482+cPhbaeuDC4Zx7ufceP+ZMacf5tnJr6xubW/ntws7u3v6BfXjUUlEiCW2SiEey44OinIW0qZnmtBNLCsLntO2Pr6d++4FKxaLwXk9i2hcwDFnACGgjeXaxJ0CPCPC0kXlp2T2vnmW9GxACPMezS07FmQGvEndBSmiBhmd/9QYRSQQNNeGgVNd1Yt1PQWpGOM0KvUTRGMgYhrRraAiCqn46eyLDp0YZ4CCSpkKNZ+rviRSEUhPhm87pyWrZm4r/ed1EB7V+ysI40TQk80VBwrGO8DQRPGCSEs0nhgCRzNyKyQgkEG1yK5gQ3OWXV0mrWnEvKtW7y1K9togjj4roBJWRi65QHd2iBmoigh7RM3pFb9aT9WK9Wx/z1py1mDlGf2B9/gBXFpc2</latexit>

P⇡�0
<latexit sha1_base64="J9BjlUZzP8gQf3DO5usrScFBJ8k=">AAACAHicbVBNS8NAEN3Ur1q/oh48eAkWwVNJqmCPBQ96rGA/oAlhst20S3eTsLsRSsjFv+LFgyJe/Rne/Ddu2hy09cHA470ZZuYFCaNS2fa3UVlb39jcqm7Xdnb39g/Mw6OejFOBSRfHLBaDACRhNCJdRRUjg0QQ4AEj/WB6U/j9RyIkjaMHNUuIx2Ec0ZBiUFryzROXg5pgYFkn992EurfAOfi2b9bthj2HtUqcktRRiY5vfrmjGKecRAozkHLo2InyMhCKYkbymptKkgCewpgMNY2AE+ll8wdy61wrIyuMha5IWXP190QGXMoZD3Rnca5c9grxP2+YqrDlZTRKUkUivFgUpsxSsVWkYY2oIFixmSaABdW3WngCArDSmdV0CM7yy6uk12w4l43m/VW93SrjqKJTdIYukIOuURvdoQ7qIoxy9Ixe0ZvxZLwY78bHorVilDPH6A+Mzx+uQZZr</latexit>

P(1,2)�0
<latexit sha1_base64="ZN5JyyNXY+BNrnUimU5DW9wn11w=">AAACBHicbVDLSsNAFJ3UV62vqMtuBotQQUpSBbssuNBlBfuAtoSb6aQdOpOEmYlQQhZu/BU3LhRx60e482+cPhbaeuDC4Zx7ufceP+ZMacf5tnJr6xubW/ntws7u3v6BfXjUUlEiCW2SiEey44OinIW0qZnmtBNLCsLntO2Pr6d++4FKxaLwXk9i2hcwDFnACGgjeXaxJ0CPCPC0kXlp2T2vnmW9GxACPMezS07FmQGvEndBSmiBhmd/9QYRSQQNNeGgVNd1Yt1PQWpGOM0KvUTRGMgYhrRraAiCqn46eyLDp0YZ4CCSpkKNZ+rviRSEUhPhm87pyWrZm4r/ed1EB7V+ysI40TQk80VBwrGO8DQRPGCSEs0nhgCRzNyKyQgkEG1yK5gQ3OWXV0mrWnEvKtW7y1K9togjj4roBJWRi65QHd2iBmoigh7RM3pFb9aT9WK9Wx/z1py1mDlGf2B9/gBXFpc2</latexit>

�0
<latexit sha1_base64="C4nN19m7TVbF1kFYnOT3Arp1S/w=">AAAB73icbVBNS8NAEJ34WetX1aOXYBE8laQK9ljwoMcK9gPaUCbbTbt0dxN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZemHCmjed9O2vrG5tb24Wd4u7e/sFh6ei4peNUEdokMY9VJ0RNOZO0aZjhtJMoiiLktB2Ob2Z++4kqzWL5YCYJDQQOJYsYQWOlTu8WhcC+1y+VvYo3h7tK/JyUIUejX/rqDWKSCioN4ah11/cSE2SoDCOcTou9VNMEyRiHtGupREF1kM3vnbrnVhm4UaxsSePO1d8TGQqtJyK0nQLNSC97M/E/r5uaqBZkTCapoZIsFkUpd03szp53B0xRYvjEEiSK2VtdMkKFxNiIijYEf/nlVdKqVvzLSvX+qlyv5XEU4BTO4AJ8uIY63EEDmkCAwzO8wpvz6Lw4787HonXNyWdO4A+czx97vY+S</latexit> (w1, w

0, w2)
<latexit sha1_base64="ROCDl44/PCXdhx0RWeGjVHpmL7Y=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69LBaxgpSkCvZY8OKxgv2ANobNdtMu3WzC7sZSQv+HFw+KePW/ePPfuG1z0NYHA4/3ZpiZ58ecKW3b31ZubX1jcyu/XdjZ3ds/KB4etVSUSEKbJOKR7PhYUc4EbWqmOe3EkuLQ57Ttj25nfvuJSsUi8aAnMXVDPBAsYARrIz2Wx55zicbnprzqhVcs2RV7DrRKnIyUIEPDK371+hFJQio04ViprmPH2k2x1IxwOi30EkVjTEZ4QLuGChxS5abzq6fozCh9FETSlNBorv6eSHGo1CT0TWeI9VAtezPxP6+b6KDmpkzEiaaCLBYFCUc6QrMIUJ9JSjSfGIKJZOZWRIZYYqJNUAUTgrP88ippVSvOVaV6f12q17I48nACp1AGB26gDnfQgCYQkPAMr/Bmja0X6936WLTmrGzmGP7A+vwBlpmQlg==</latexit>

(a1, 0, a2)
<latexit sha1_base64="tBm4TaBzxy1MvBwO+OPkcebPSiU=">AAAB9HicdVDLSgMxFM3UV62vqks3wSJUKMNMVeyy4MZlBfuAdhjupJk2NJMZk0yhlH6HGxeKuPVj3Pk3ZtoKPg9c7uGce8nNCRLOlHacdyu3srq2vpHfLGxt7+zuFfcPWipOJaFNEvNYdgJQlDNBm5ppTjuJpBAFnLaD0VXmt8dUKhaLWz1JqBfBQLCQEdBG8srguxXsVDD41VO/WHLsCycD/k1ce96dElqi4Rffev2YpBEVmnBQqus6ifamIDUjnM4KvVTRBMgIBrRrqICIKm86P3qGT4zSx2EsTQmN5+rXjSlESk2iwExGoIfqp5eJf3ndVIc1b8pEkmoqyOKhMOVYxzhLAPeZpETziSFAJDO3YjIECUSbnAomhM+f4v9Jq2q7Z3b15rxUry3jyKMjdIzKyEWXqI6uUQM1EUF36B49oidrbD1Yz9bLYjRnLXcO0TdYrx+YR5AB</latexit>

(a1
1, a

2
1, a2)

<latexit sha1_base64="5iSQeP1rpl7yKmoNnEEAI2ZPK7s=">AAAB/HicdVDLSsNAFJ3UV62vaJduBotQQUISFbssuHFZwT6gjWEynbRDJ5MwMxFCqL/ixoUibv0Qd/6Nk7aCzwPDPZxzL/fOCRJGpbLtd6O0tLyyulZer2xsbm3vmLt7HRmnApM2jlksegGShFFO2ooqRnqJICgKGOkGk4vC794SIWnMr1WWEC9CI05DipHSkm9W68h3bpxjWBS3KO6Rb9Zs68wuAH8Tx5pVuwYWaPnm22AY4zQiXGGGpOw7dqK8HAlFMSPTyiCVJEF4gkakrylHEZFePjt+Cg+1MoRhLPTjCs7UrxM5iqTMokB3RkiN5U+vEP/y+qkKG15OeZIqwvF8UZgyqGJYJAGHVBCsWKYJwoLqWyEeI4Gw0nlVdAifP4X/k45rOSeWe3VaazYWcZTBPjgAdeCAc9AEl6AF2gCDDNyDR/Bk3BkPxrPxMm8tGYuZKvgG4/UD4OiSTg==</latexit>

(0, a1, a2)
<latexit sha1_base64="fej0ohKHIeZyh4k5Nq68a8h2WnY=">AAAB9HicdVDLSgMxFL1TX7W+qi7dBItQQYaZqthlwY3LCvYB7VAyaaYNzWSmSaZQhn6HGxeKuPVj3Pk3ZtoKPg8k93DOveTm+DFnSjvOu5VbWV1b38hvFra2d3b3ivsHTRUlktAGiXgk2z5WlDNBG5ppTtuxpDj0OW35o+vMb02oVCwSd3oaUy/EA8ECRrA2kld2zhDuudlVOe0VS4596WRAv4lrz6tTgiXqveJbtx+RJKRCE46V6rhOrL0US80Ip7NCN1E0xmSEB7RjqMAhVV46X3qGTozSR0EkzREazdWvEykOlZqGvukMsR6qn14m/uV1Eh1UvZSJONFUkMVDQcKRjlCWAOozSYnmU0MwkczsisgQS0y0yalgQvj8KfqfNCu2e25Xbi9KteoyjjwcwTGUwYUrqMEN1KEBBMZwD4/wZE2sB+vZelm05qzlzCF8g/X6AZb8kAE=</latexit>

(a1
2, a1, a

2
2)

<latexit sha1_base64="7xL41bUCpYtJumVRe7R+6cYhLXE=">AAAB/HicdVBdS8MwFE3n15xf1T36EhzCBBltVdzjwBcfJ7g52LqSZukWlqYlSYVS5l/xxQdFfPWH+Oa/Me0m+HkguYdz7iU3x48Zlcqy3o3S0vLK6lp5vbKxubW9Y+7udWWUCEw6OGKR6PlIEkY56SiqGOnFgqDQZ+TGn17k/s0tEZJG/FqlMXFDNOY0oBgpLXlmtY48Z2gfQ+QVlzN0jjyzZjXOrBzwN7EbRbVqYIG2Z74NRhFOQsIVZkjKvm3Fys2QUBQzMqsMEklihKdoTPqachQS6WbF8jN4qJURDCKhD1ewUL9OZCiUMg193RkiNZE/vVz8y+snKmi6GeVxogjH84eChEEVwTwJOKKCYMVSTRAWVO8K8QQJhJXOq6JD+Pwp/J90nYZ90nCuTmut5iKOMtgHB6AObHAOWuAStEEHYJCCe/AInow748F4Nl7mrSVjMVMF32C8fgDiJ5JP</latexit>

(a2, a1, 0)
<latexit sha1_base64="16nMUwpER8/Iqnu+WgPgll2Azx0=">AAAB9HicdVDLSgMxFM3UV62vqks3wSJUKMNMVeyy4MZlBfuAdhjupJk2NJMZk0yhlH6HGxeKuPVj3Pk3ZtoKPg9c7uGce8nNCRLOlHacdyu3srq2vpHfLGxt7+zuFfcPWipOJaFNEvNYdgJQlDNBm5ppTjuJpBAFnLaD0VXmt8dUKhaLWz1JqBfBQLCQEdBG8srgVysYfLeCnVO/WHLsCycD/k1ce96dElqi4Rffev2YpBEVmnBQqus6ifamIDUjnM4KvVTRBMgIBrRrqICIKm86P3qGT4zSx2EsTQmN5+rXjSlESk2iwExGoIfqp5eJf3ndVIc1b8pEkmoqyOKhMOVYxzhLAPeZpETziSFAJDO3YjIECUSbnAomhM+f4v9Jq2q7Z3b15rxUry3jyKMjdIzKyEWXqI6uUQM1EUF36B49oidrbD1Yz9bLYjRnLXcO0TdYrx+ZmpAB</latexit>

(a2, a
1
1, a

2
1)

<latexit sha1_base64="V0maIWd7c9bLKFnsFYjorupM1Xw=">AAAB/HicdVDLSsNAFJ3UV62vaJduBotQQUISFbssuHFZwT6gjWEynbRDJ5MwMxFCqL/ixoUibv0Qd/6Nk7aCzwPDPZxzL/fOCRJGpbLtd6O0tLyyulZer2xsbm3vmLt7HRmnApM2jlksegGShFFO2ooqRnqJICgKGOkGk4vC794SIWnMr1WWEC9CI05DipHSkm9W68h3jyHynRtnXtwj36zZ1pldAP4mjjWrdg0s0PLNt8EwxmlEuMIMSdl37ER5ORKKYkamlUEqSYLwBI1IX1OOIiK9fHb8FB5qZQjDWOjHFZypXydyFEmZRYHujJAay59eIf7l9VMVNryc8iRVhOP5ojBlUMWwSAIOqSBYsUwThAXVt0I8RgJhpfOq6BA+fwr/Jx3Xck4s9+q01mws4iiDfXAA6sAB56AJLkELtAEGGbgHj+DJuDMejGfjZd5aMhYzVfANxusH4E+STg==</latexit>

(a2, 0, a1)
<latexit sha1_base64="gsaiZW53Vj+Ed3j/7mRkmPwHttQ=">AAAB9HicdVDLSgMxFM3UV62vqks3wSJUKMNMVeyy4MZlBfuAdhjupJk2NJMZk0yhlH6HGxeKuPVj3Pk3ZtoKPg9c7uGce8nNCRLOlHacdyu3srq2vpHfLGxt7+zuFfcPWipOJaFNEvNYdgJQlDNBm5ppTjuJpBAFnLaD0VXmt8dUKhaLWz1JqBfBQLCQEdBG8srgVyvYqWDw3VO/WHLsCycD/k1ce96dElqi4Rffev2YpBEVmnBQqus6ifamIDUjnM4KvVTRBMgIBrRrqICIKm86P3qGT4zSx2EsTQmN5+rXjSlESk2iwExGoIfqp5eJf3ndVIc1b8pEkmoqyOKhMOVYxzhLAPeZpETziSFAJDO3YjIECUSbnAomhM+f4v9Jq2q7Z3b15rxUry3jyKMjdIzKyEWXqI6uUQM1EUF36B49oidrbD1Yz9bLYjRnLXcO0TdYrx+YT5AB</latexit>

(w1, w1, w2)
<latexit sha1_base64="rzJfJCv74X5DhetcdXM4R5XMVvM=">AAAB+HicbVDLSsNAFL3xWeujUZduBotQQUpSBbssuHFZwT6gDWEynbRDJ5MwM1Fq6Je4caGIWz/FnX/jtM1CWw/cy+Gce5k7J0g4U9pxvq219Y3Nre3CTnF3b/+gZB8etVWcSkJbJOax7AZYUc4EbWmmOe0mkuIo4LQTjG9mfueBSsVica8nCfUiPBQsZARrI/l2qfLouxcob7Vz3y47VWcOtErcnJQhR9O3v/qDmKQRFZpwrFTPdRLtZVhqRjidFvupogkmYzykPUMFjqjysvnhU3RmlAEKY2lKaDRXf29kOFJqEgVmMsJ6pJa9mfif10t1WPcyJpJUU0EWD4UpRzpGsxTQgElKNJ8Ygolk5lZERlhiok1WRROCu/zlVdKuVd3Lau3uqtyo53EU4AROoQIuXEMDbqEJLSCQwjO8wpv1ZL1Y79bHYnTNyneO4Q+szx/XRpE6</latexit>

(w0, w1, w2)
<latexit sha1_base64="OEEVB4hXoHIwDLmokHldJMwi8hA=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBItYQcpMFeyy4MZlBfuAdiyZNNOGZjJDkrGUof/hxoUibv0Xd/6NmXYW2nrgXg7n3EtujhdxprRtf1u5tfWNza38dmFnd2//oHh41FJhLAltkpCHsuNhRTkTtKmZ5rQTSYoDj9O2N75N/fYTlYqF4kFPI+oGeCiYzwjWRnosT84v0aTvpK160S+W7Io9B1olTkZKkKHRL371BiGJAyo04ViprmNH2k2w1IxwOiv0YkUjTMZ4SLuGChxQ5Sbzq2fozCgD5IfSlNBorv7eSHCg1DTwzGSA9Ugte6n4n9eNtV9zEyaiWFNBFg/5MUc6RGkEaMAkJZpPDcFEMnMrIiMsMdEmqIIJwVn+8ippVSvOVaV6f12q17I48nACp1AGB26gDnfQgCYQkPAMr/BmTawX6936WIzmrGznGP7A+vwBld+Qlg==</latexit>

(w2, w1, w2)
<latexit sha1_base64="sL+KRdlI7btKGEJHdePxC+qt5jo=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1iEClKSKNhlwY3LCvYBbQiT6bQdOnkwM7HU0C9x40IRt36KO//GSZuFth64l8M59zJ3jh9zJpVlfRuFjc2t7Z3ibmlv/+CwbB4dt2WUCEJbJOKR6PpYUs5C2lJMcdqNBcWBz2nHn9xmfueRCsmi8EHNYuoGeBSyISNYackzy9Wp51yiqWdnzbnwzIpVsxZA68TOSQVyND3zqz+ISBLQUBGOpezZVqzcFAvFCKfzUj+RNMZkgke0p2mIAyrddHH4HJ1rZYCGkdAVKrRQf2+kOJByFvh6MsBqLFe9TPzP6yVqWHdTFsaJoiFZPjRMOFIRylJAAyYoUXymCSaC6VsRGWOBidJZlXQI9uqX10nbqdlXNef+utKo53EU4RTOoAo23EAD7qAJLSCQwDO8wpvxZLwY78bHcrRg5Dsn8AfG5w/Y1ZE7</latexit>

(w2, w1, w
0)

<latexit sha1_base64="lGm3u2SLaF8c1+p6wO9Gofmpk10=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBItYQcpMFeyy4MZlBfuAdhwyaaYNzWSGJGMpQ//DjQtF3Pov7vwb03YW2nrgXg7n3Etujh9zprRtf1u5tfWNza38dmFnd2//oHh41FJRIgltkohHsuNjRTkTtKmZ5rQTS4pDn9O2P7qd+e0nKhWLxIOexNQN8UCwgBGsjfRYHnvVSzT2HNPOL7xiya7Yc6BV4mSkBBkaXvGr149IElKhCcdKdR071m6KpWaE02mhlygaYzLCA9o1VOCQKjedXz1FZ0bpoyCSpoRGc/X3RopDpSahbyZDrIdq2ZuJ/3ndRAc1N2UiTjQVZPFQkHCkIzSLAPWZpETziSGYSGZuRWSIJSbaBFUwITjLX14lrWrFuapU769L9VoWRx5O4BTK4MAN1OEOGtAEAhKe4RXerLH1Yr1bH4vRnJXtHMMfWJ8/l1yQlg==</latexit>

(w2, w1, w1)
<latexit sha1_base64="sY3gD1ivqbuHG35j3syIin0fjvY=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1iEClKSKthlwY3LCvYBbQiT6aQdOnkwM7HU0C9x40IRt36KO//GaZqFth64l8M59zJ3jhdzJpVlfRuFjc2t7Z3ibmlv/+CwbB4dd2SUCELbJOKR6HlYUs5C2lZMcdqLBcWBx2nXm9wu/O4jFZJF4YOaxdQJ8ChkPiNYack1y9WpW79EU9fO2oVrVqyalQGtEzsnFcjRcs2vwTAiSUBDRTiWsm9bsXJSLBQjnM5Lg0TSGJMJHtG+piEOqHTS7PA5OtfKEPmR0BUqlKm/N1IcSDkLPD0ZYDWWq95C/M/rJ8pvOCkL40TRkCwf8hOOVIQWKaAhE5QoPtMEE8H0rYiMscBE6axKOgR79cvrpFOv2Ve1+v11pdnI4yjCKZxBFWy4gSbcQQvaQCCBZ3iFN+PJeDHejY/laMHId07gD4zPH9dQkTo=</latexit>

(w2, w
0, w1)

<latexit sha1_base64="XW3PE4jOgVeXBCHmHwYn6k1fvqY=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69LBaxgpSkCvZY8OKxgv2ANobNdtMu3WzC7sZSQv+HFw+KePW/ePPfuG1z0NYHA4/3ZpiZ58ecKW3b31ZubX1jcyu/XdjZ3ds/KB4etVSUSEKbJOKR7PhYUc4EbWqmOe3EkuLQ57Ttj25nfvuJSsUi8aAnMXVDPBAsYARrIz2Wx171Eo3PTXnOhVcs2RV7DrRKnIyUIEPDK371+hFJQio04ViprmPH2k2x1IxwOi30EkVjTEZ4QLuGChxS5abzq6fozCh9FETSlNBorv6eSHGo1CT0TWeI9VAtezPxP6+b6KDmpkzEiaaCLBYFCUc6QrMIUJ9JSjSfGIKJZOZWRIZYYqJNUAUTgrP88ippVSvOVaV6f12q17I48nACp1AGB26gDnfQgCYQkPAMr/Bmja0X6936WLTmrGzmGP7A+vwBlqKQlg==</latexit>

(a) Θ1→2(θθθ1) (b) Θ2→3(θθθ2) (c) Θ3→4(θθθ3)

Figure 4. The geometry of the expansion manifold Θr→m with m = r + 1 and the connectivity graph of the affine subspaces. The
arrangement of the subspaces is demonstrated geometrically only in (a)-(b), but their connectivity graph is shown in all three cases. Blue
subspaces have one vanishing output weight, green subspaces have two identical incoming weight vectors. (a) Case of a network with
two hidden neurons with parameters (w1, w

′, a1, 0) that is reducible to a network with a single hidden neuron. The base subspace Γ0

is connected to a neighbor subspace P(1,2)Γ0 via three line segments: we first shift w′ towards w1 while keeping the other parameters
fixed and then move a11 from a1 to 0 while keeping a11 + a21 = a1. The connectivity graph (bottom right) shows each subspace as an
appropriately colored dot. (b) Case of a network with three hidden neurons with parameters (w1, w

′, w2, a1, 0, a2) that is reducible to
a network with two hidden neurons. Γ0 is connected to any other subspace PπΓ0 through transitions from one neighbor to the next.
Note that there are T (2, 3) = 12 subspaces. (c) The connectivity graph of subspaces for the expansion 3 → 4, there are T (3, 4) = 60
subspaces (24 blue and 36 green), where each blue subspace is connected to three green subspaces and each green subspace is connected
to two blue subspaces.

where Pπ permutes the neurons ϑi = [wi, ai] of θθθm. We
call the union of these affine subspaces the expansion man-
ifold of θθθr:

Definition 3.3. For r ≤ m, the expansion manifold
Θr→m(θθθr) ⊂ RDm of an irreducible r-neuron point θθθr

is defined by

Θr→m(θθθr) :=
⋃

s=(k1,...,kr,b1,...,bj)
π∈Sm

PπΓs(θθθ
r),

where s is a tuple with ki ≥ 1, bi ≥ 0 such that sum(s) =
m.

Since Θr→m(θθθr) is an equal-loss manifold, the gradient
flow can cross it at most for once. Therefore Θr→m(θθθr)
is not an invariant manifold like the symmetry subspaces.
Next, we describe the precise geometry of the expansion
manifolds

Theorem 3.1. For m ≥ r, the expansion manifold
Θr→m(θθθr) of an irreducible point θθθr consists of exactly3

T (r,m) :=

m−r∑
j=0

∑
sum(s)=m
ki≥1,bi≥1

(
m

k1, ..., kr, b1, ..., bj

)
1

c1!...cm−r!

distinct affine subspaces (none is including another one) of
dimension at least min(din, dout)(m − r), where ci is the
number of occurences of i among (b1, ..., bj).

3(n1+···+nr
n1,...,nr

)
denotes the coefficient (n1+···+nr)!

n1!...nr !
.

For m > r, Θr→m(θθθr) is connected: any pair of distinct
points θθθ,θθθ′ ∈ Θr→m(θθθr) is connected via a union of line
segments γγγ : [0, 1] → Θr→m(θθθr) such that γγγ(0) = θθθ and
γγγ(1) = θθθ′.

Proof (Sketch). The number of affine subspaces T is equal
to the distinct permutations of the incoming weight vectors
(w1, . . . , wr, w

′
1, . . . , w

′
j) for all possible tuples s where

wi’s are distinct and w′i’s are dummy variables represent-
ing zero-type neurons (the neurons that do not contribute
to the network function since their outgoing weight vectors
sum to zero). The normalization factor 1/c1!c2! · · · cm−r!
cancels the repetitions coming from the zero-type neurons
(w′1, . . . , w

′
j). For example for the standard case m = r,

there is no room for zero-type neurons. As a result we have

T (r, r) =
∑

k1+...+kr=r
ki≥1

(
r

k1, ..., kr

)
=

(
r

1, ..., 1

)
= r!

distinct subspaces of dimension min(din, dout)(m−r) = 0.

For the general case m > r, the proof for connectivity fol-
lows from the following observations. We start from a base
subspace Γ0 = Γs(θθθ

r), where there is a zero-type neuron
with outgoing weight vector exactly zero4 at position i∗.
The neighbor subspaces P(i∗,i)Γ0, where (i∗, i) ∈ Sm is

4If all zero-type neurons are part of a group with more than
one neuron, we can choose the first neuron in a group and set its
outgoing weight vector to zero while respecting the condition in
Eq. 3.



Geometry of the Loss Landscape in Overparameterized Neural Networks

a transposition that permutes two neurons only, are con-
nected to the base subspace via three line segments (Fig-
ure 4-a). Since any permutation is a composition of trans-
positions, permuted subspaces PπΓ0 can be reached via a
union of line segments by going from one neighbor to the
next (Figure 4-b). �

4. Overparameterized ANN Landscapes
In this section, we study the geometry of the global minima
manifold and the critical subspaces, i.e. affine subspaces
containing only critical points, in two-layer overparame-
terized neural networks. In particular, we show how the
affine subspaces that form the global minima manifold are
connected to one another (Subsection 4.1). We then find a
hierarchy of saddles induced by permutation symmetries,
which we call symmetry-induced critical points (Subsec-
tion 4.2). Finally, we compare the number of affine sub-
spaces that form the global minima manifold with the num-
ber of those that contain symmetry-induced critical points
(Subsection 4.3). Generalizations to multi-layer networks
are discussed in Section 5.

We assume that there is a minimal width r∗ such that θθθ∗
achieves zero loss, i.e. Lr

∗
(θθθ∗) = 0, that the point θθθ∗ is

unique up to permutation, and that any network with width
r∗ − 1 has loss > 0 at every point. We call the wider net-
works with widthm > r∗ overparameterized and the nar-
rower networks with width r < r∗ underparameterized.
Note that θθθ∗ is irreducible by minimality of r∗.

4.1. The global minima manifold

Applying Theorem 3.1 to the expansion manifold of a
global minimum θθθ∗ of the minimal-width network, we ob-
tain a connected manifold of global minima in an overpa-
rameterized network of width m:

Corollary 4.1. In an overparameterized network with
width m > r∗, the expansion manifold of global minima
Θr∗→m(θθθ∗) is connected.

We have found a connected manifold Θr∗→m(θθθ∗) of global
minima. Furthermore, since Θr∗→m(θθθ∗) is an expansion
manifold, its geometry is precisely as described in Theo-
rem 3.1, and illustrated in Figure 4. The next question is
whether Θr∗→m(θθθ∗) contains all the zero-loss points.

In the remaining part of this subsection, we give a positive
answer to this question in a specific setting. We consider a
modified loss function:

Lmµ (θθθ) =

∫
Rdin

c(f (2)(x|θθθ), f∗(x))µ(dx),

where µ is an input data distribution with support Rdin , and
f∗ : Rdin → Rdout is a true data-generating function. The
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Figure 5. Left: The function σα,γ(x) = σsoft(x) + ασsig(γx)
satisfies the technical condition of Theorem 4.2. With this activa-
tion function, data is generated by a teacher network of width 4.
All 50 student networks with width 10 find a global minimum by
reaching loss values below 10−16. Right: The 500 = 50×10 hid-
den neurons of all the 50 student networks are classified as copies
of teacher neurons or zero-type neurons with vanishing sum of
output weights. The zero-type neurons are further classified ac-
cording to group size: there are 34 neurons with vanishing output
weight (group size 1), 54 neurons that have a partner neuron with
the same input weights and the sum of output weights equal to
0 (group size 2) etc. All zero-type neurons and replications of
weight vectors can be pruned.

assumption on the activation σ in Theorem 4.2 below is
only required for this theorem but not in Subsections 4.2
or 4.3. We find that there is no global minimum point out-
side of the expansion manifold Θr∗→m(θθθ∗) for the modi-
fied loss Lmµ and for a certain class of activation functions
(see Figure 5 for an example):

Theorem 4.2. Suppose that the activation function σ is
C∞, that σ(0) 6= 0, and that σ(n)(0) 6= 0 for infinitely
many even and odd values of n (where σ(n) denotes the
n-th derivative of σ). For m > r∗, let θθθ be an m-neuron
point, and θθθ∗ be a unique r∗-neuron global minimum up
to permutation, i.e. Lr

∗

µ (θθθ∗) = 0. If Lmµ (θθθ) = 0, then
θθθ ∈ Θr∗→m(θθθ∗). (See Appendix-B.3 for the proof.)

Remark 4.1. The function σα,γ(x) = σsoft(x) +ασsig(γx)
with α, γ > 0 (Figure 5) satisfies the conditions of Theo-
rem 4.2, but the standard softplus σsoft(x) = ln[1+exp(x)]
or sigmoidal σsig(x) = 1/[1 + exp(−x)] functions do not.
For these, the analysis must include additional invariances.

Remark 4.2. If a global minimum is found by gradient
descent in overparameterized networks, then the final set
of parameters can be classified into groups of replicated
weight vectors according to Definition 3.2 (Figure 5). The
classification can be exploited for pruning the network.

Remark 4.3. Kuditipudi et al. (2019) construct an exam-
ple of a finite-size dataset (in contrast with our infinite
dataset framework) for two-layer overparameterized ReLU
networks where they find discrete global minima points.
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4.2. Symmetry-induced critical points

In this subsection, we consider an overparameterized net-
work with a fixed width m > r∗ and study critical points
in an expansion manifold Θr→m(θθθr∗) where we assume that
θθθr∗ is an irreducible critical point of an underparameterized
network with width r < r∗. Observe that θθθr∗ is not a zero-
loss point since r∗ is the minimal width to achieve zero
loss. We consider only those points without zero-type neu-
rons in Θr→m(θθθr∗), we show that these have zero gradient,
and therefore are critical points of Lm.

Definition 4.1. For r ≤ m, let s = (k1, . . . , kr) be an
r-tuple with ki ≥ 1 and sum(s) = m. The symmetry-
induced critical points are those in the set

Θr→m(θθθr∗) =
⋃

s=(k1,...,kr)
π∈Sm

PπΓs(θθθ
r
∗)

where the critical (affine) subspace Γs(θθθ
r
∗) ⊂ RDm of an

irreducible critical point θθθr∗ = (w∗1 , ..., w
∗
r , a
∗
1, ..., a

∗
r) is

{(w∗1 , ..., w∗1︸ ︷︷ ︸
k1

, ..., w∗r , ..., w
∗
r︸ ︷︷ ︸

kr

, β1
1a
∗
1, ..., β

k1
1 a∗1,

..., β1
ra
∗
r , ..., β

kr
r a
∗
r) :

kt∑
i=1

βit = 1 for t ∈ [r]}. (4)

All points in Θr→m(θθθr∗) are critical points hence the name
symmetry-induced ‘critical points’:

Proposition 4.3. For an irreducible critical point θθθr∗ of Lr,
Θr→m(θθθr∗) is a union of

G(r,m) :=
∑

k1+···+kr=m
ki≥1

(
m

k1, ..., kr

)

distinct non-intersecting affine subspaces of dimensionm−
r. All points in Θr→m(θθθr∗) are critical points of Lm.

Proposition 4.3 shows that a critical point of a smaller net-
work θθθr∗ expands into G(r,m) critical subspaces in the
overparameterized network with width m. If θθθr∗ is a strict
saddle, Θr→m(θθθr∗) contains only strict saddles, since the
escape direction is preserved for affine transformations Γs.

Proposition 4.4. For C2 functions c and σ, for all θθθm∗ ∈
Θr→m(θθθr∗), the spectrum of the Hessian ∇2Lm(θθθm∗ ) has
(m−r) zero eigenvalues. Moreover, if θθθr∗ is a strict saddle,
then all points in Θr→m(θθθr∗) are also strict saddles, i.e.,
their Hessian has at least one negative eigenvalue.

If θθθr∗ is a local minimum, Fukumizu et al. (2019) show that
the subspaces for which only one neuron is replicated (ki >
1, kj = 1 for all j 6= i) may contain both local minima
and strict saddles depending on the spectrum of a matrix

Figure 6. The ratio Rk(r∗,m) of the multiplier for k-th level
saddle G(r∗ − k,m) to the number of global minima subspaces
T (r∗,m) as the width m of the overparameterized network in-
creases, plotted for a fixed width r∗ = 30 of the minimal network.
The ratio of all critical subspaces to the global minima subspaces∑r∗−1
k=1 akG(r∗ − k,m)/T (r∗,m) is shown in blue assuming

ak = 1 for all k. Note that form� r∗ the blue curve approaches
the curve for k = 1 indicating that only subspaces corresponding
to first-level saddles are potentially relevant, yet the global min-
ima subspaces clearly dominate.

of derivatives [see their Theorem 11]. We expect a similar
result to hold true for all subspaces in Θr→m(θθθr∗), including
arbitrary replications.

Remark 4.4. We explore a hierarchy between symmetry-
induced critical points in ∪r<r∗Θr→m(θθθr∗) in a network
of width m: first-level saddles refer to symmetry-induced
critical points that are equivalent to a minimum of a net-
work of width r∗ − 1; more generally, k-th level saddles
refer to those equivalent to a minimum of a network of
width r∗−k. Adding neurons enables the network to reach
a lower loss minimum thus higher-level symmetry-induced
saddles usually attain higher losses. We notice a similarity
with Gaussian Process (Bray & Dean, 2007) and spherical
spin glass (Auffinger et al., 2013) landscapes, where the
higher-order5 saddles attain higher losses.

Finally, we note that the dimensionality of the global
minima subspaces PπΓs(θθθ∗) and the critical subspaces
PπΓs(θθθ

r
∗) differ, in particular in the way they depend on

r. What is common is that they are all ‘tiny’ compared to
the ambient dimensionality of the parameter space. In the
following subsection, we will thus focus on the compari-
son of the number of critical subspaces and that of global
minima subspaces.

4.3. Width-dependent comparison of the critical
subspaces and the global minima subspaces

In the loss landscape of an overparameterized network of
width m, we have the connected global minima mani-

5The order of a saddle point is the number of negative eigen-
values of its Hessian.
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fold Θr∗→m(θθθ∗) as well as many subspaces of symmetry-
induced critical points in Θr→m(θθθr∗), where θθθr∗ is an irre-
ducible critical point in a smaller network with some width
r = r∗ − k < r∗. In this subsection, we count these sub-
spaces and find

• T (r∗,m) global minima subspaces (Corollary 4.1)

• G(r∗ − k,m)ak critical subspaces for all k =
1, . . . , r∗ − 1 (Proposition 4.3)

where ak is the number of distinct6 irreducible critical
points in a network with width r∗ − k and where G(r∗ −
k,m) is the multiplier.

To compare the number of non-global critical subspaces
with the number of global minima subspaces, we give
closed-form formulas for G and T . This is proven in
Appendix-B.5 using Newton’s series for finite differences
(Milne-Thomson, 2000) and a counting argument:

Proposition 4.5. For r ≤ m, we have

G(r,m) =

r∑
i=1

(
r

i

)
(−1)r−iim

T (r,m) = G(r,m) +

m−r∑
u=1

(
m

u

)
G(r,m− u)g(u)

where g(u) =
∑u
j=1

1
j!G(j, u).

Using Proposition 4.5, we find the following asymptotic
behaviors for G and T :

Lemma 4.6. For any k ≥ 0 fixed, we have,

G(m− k,m) ∼ T (m− k,m) ∼ mk

2kk!
m!, as m→∞.

For any fixed r ≥ 0, we have G(r,m) ∼ rm as m→∞.

We are now ready to compare the number of global min-
ima subspaces T with the number of critical subspaces G
under the assumption that the minimal width r∗ is large.
This is realistic since for a real-world dataset the network
should be sufficiently wide to achieve zero loss. Apply-
ing Lemma 4.6, we find that the symmetry-induced critical
points dominate the global minima in mildly overparam-
eterized, and vice versa in vastly overparameterized net-
works (see Figure 6). A mathematical analysis yields:

Mildly Overparameterized. Let m = r∗ + h for fixed h.
We have in the limit r∗ →∞ and for fixed k a ratio:

Rk(r∗,m) :=
G(r∗ − k,m)

T (r∗,m)
∼ 1

2k(h+ k) · · · (h+ 1)
(r∗)k.

(5)

6We say two irreducible critical points θθθa∗ and θθθb∗ are distinct
if θθθa∗ 6= Pπθθθb∗ for all applicable permutations π.

Thus, for a small amount of overparameterization, the mul-
tiplier of the k-th level saddles G(r∗ − k,m) scales as
(r∗)kT (r∗,m), indicating a proliferation of saddles at a
rate much larger than that of the global minima. Related
to this proliferation, we empirically encounter training fail-
ures (i.e. training halts before reaching a global mini-
mum) for typical initializations in this regime (see Fig-
ure 1). Moreover, we empirically find traces of approach-
ing a saddle in gradient trajectories in narrow two-layer
ANNs trained on MNIST (see Appendix).

Vastly Overparameterized. For m very large, i.e. m �
r∗, we have

r∗−1∑
k=1

Rk(r∗,m)ak =

∑r∗−1
k=1 G(r∗ − k,m)ak

T (r∗,m)
≤
(
r∗ − 1

r∗

)m
(6)

if ak’s satisfy ak ≤
(
r∗−1
k−1

)
. Because the RHS of Eq. (6)

decreases down to 0 as m → ∞ (at a geometric rate),
the global minima dominate all symmetry-induced critical
points. We note that there could be other critical points in
addition to those generated by the symmetries. The calcu-
lations above are presented in the Appendix.

5. Multi-Layer ANNs
In this section, we introduce the expansion manifold for
multi-layer networks that enables obtaining connectivity
and counting results on the global minima manifold for
multi-layer networks (i.e., generalizing Theorem 3.1 and
Corollary 4.1). Finally, we compare the number of affine
subspaces of the global minima and symmetry-induced
critical points. An ANN with L layers f (L) : Rdin → Rdout

with widths rrr = (r1, r2, . . . , rL−1) is

f (L)(x|θθθ) = W (L)σ(W (L−1) · · ·σ(W (1)x))) (7)

where W (`) ∈ Rr`×r`−1 for ` = 1, . . . , L with r0 = din
and rL = dout, the non-linearity σ is applied element-
wise, and θθθ = (W (L), . . . ,W (1)) ∈ Rd(rrr) is the vector
of parameters of dimension d(rrr) =

∑L
`=1 r`−1r`. Observ-

ing that any pair of weight matrices (W (`),W (`+1)) for
` = 1, . . . , L − 1 forms a two-layer network within the
multi-layer network, we say that a multi-layer network is
irreducible if all pairs (W (`),W (`+1)) are irreducible.

The global minima manifold. We define the expansion
manifold of an irreducible network with widths rrr into
larger widths mmm by taking the sequential expansion man-
ifolds of all pairs (W (`),W (`+1)). More precisely, we de-
fine the multi-layer expansion manifold as follows

Θrrr→mmm(θθθrrr) := {φφφ1 ∈ Rd(mmm) : φφφL−1 ∈ Θ(L−1)
rrr→mmm (θθθrrr),

. . . ,φφφ1 ∈ Θ(1)
rrr→mmm(φφφ2)} (8)
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where Θ
(`)
rrr→mmm(φφφ) substitutes the pair (W (`),W (`+1)) with

those of a point in the usual expansion manifold (Def. 3.3).
Since each expansion leaves the output of the network un-
changed, all points in this expansion have the same loss.
Note that the order in which we take these expansions af-
fects the final manifold; expanding from the last layer to
the first one gives the largest final manifold. The same fi-
nal manifold can be obtained via a ‘forward pass’ if one
considers expansion up to an equivalence of the incoming
weight vectors.

Assume that a minimal L-layer network achieves a unique
(up to permutation) global minimum point θθθ∗ with widths
rrr∗ = (r∗1 , r

∗
2 , . . . , r

∗
L−1). In an overparameterized network

of widths mmm = (m1, . . . ,mL−1) with m` > r∗` for all ` ∈
[L−1] (i.e. at least one extra neuron at every hidden layer),
we find a connected manifold of global minimum, which is
simply the multi-layer expansion manifold Θrrr∗→mmm(θθθ∗) of
the minimum point θθθ∗. The zero-loss expansion manifold
Θrrr∗→mmm(θθθ∗) consists of the following number of distinct
affine subspaces

L−1∏
`=1

T (r∗` ,m`).

Symmetry-induced critical points. Similarly, we can
consider the symmetry-induced critical points for multi-
layer networks by applying sequential expansions Θ

(`)

rrr→mmm
to all hidden layers. We note that applying this expansion
to a pair (W

(`)
∗ ,W

(`+1)
∗ ) of a critical point θθθrrr∗ generates a

manifold of critical points as in the two-layer case, hence
these expansions preserve criticality. The number of affine
subspaces in the set of symmetry-induced critical points is

L−1∏
`=1

G(r`,m`).

Application. Similar to Fig 1-(d,e), we consider the case
where a minimal L-layer network with r∗ neurons at each
hidden layer reaches a global minimum point θθθ∗. Let us
consider an overparameterization with m = r∗ + h neu-
rons at each hidden layer. The ratio of the number of crit-
ical subspaces of k-th level saddles to the global minima
subspaces is

Rk(r∗,m)L−1 =

(
G(r∗ − k,m)

T (r∗,m)

)L−1
,

which is exponential in depth. Therefore in the mildly over-
parameterized regime, i.e. when h is small, we see that
the ratio of the number of saddles to that of global minima
grows exponentially with depth. In other words, we ob-
serve that the dominance of the number of saddles is even
more pronounced in the multi-layer case. For the vastly
overparameterized regime, i.e. when h is large, we observe

the opposite effect: the dominance of the number of global
minima is stronger in the multi-layer case. Finally, we ob-
serve a width-depth trade-off in reaching a dominance of
the global minima: one can either increase the width of a
two-layer network so that the ratios Rk(r∗,m) go down to
0; or increase the depth in a network where each layer is
just large enough to guarantee Rk(r∗,m) < 1 which even-
tually decreases the total ratio down to 0.

6. Conclusion & Discussion
In this paper, we explicitly characterize the geometry
formed by the critical points in overparameterized neural
networks. For the global minima, we showed that under
mild conditions they live in a manifold consisting of a num-
ber of connected affine subspaces. We characterize a cer-
tain type of critical points, the so-called symmetry-induced
critical points and we showed that they form an explicit
number of affine subspaces. From the theoretical point of
view, it remains an open question whether there are other
critical points in the overparameterized networks in addi-
tion to the symmetry-induced ones. We also leave it to fu-
ture work to study whether all symmetry-induced critical
points are strict saddles or not.

Our main result quantifies the scaling of the numbers of
global minima subspaces and the subspaces containing
symmetry-induced critical points as the width grows. In
mildly overparameterized networks, the number of critical
subspaces is much greater than that of the global minima
subspaces, so that in practice, the gradient trajectories may
get influenced by these saddles or even get transiently stuck
in their neighborhood for a fraction of typical initializa-
tions. However, in vastly overparameterized networks, the
number of global minima subspaces dominates that of the
critical subspaces so that symmetry-induced saddles play
only a marginal role. From a practical point of view, our
theoretical results pave the way to applications in optimiza-
tion of non-convex neural networks loss landscapes via a
combination of overparameterization and pruning.
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Appendix for
Geometry of the Loss Landscape in Overparameterized Neural Networks:

Symmetries and Invariances

We organize the Appendix as follows:

• In Section A, we discuss the experimental details presented in the main text (and in the Appendix).

– In Subsection A.1, we present numerical experiments on two-layer ANNs with various widths trained to imple-
ment the MNIST task. We investigate whether the gradient trajectories approach a saddle or not.

– In Subsection A.2, we present a detailed numerical analysis of the number of critical subspaces G, the number
of global minima subspaces T , and their ratio G/T .

– In Subsection A.3, we present a catalog of toy symmetric loss landscapes.

• In Section B, we present proofs of the theorems and propositions stated in the main text.

– In Subsection B.1, we present further properties of symmetric loss landscapes. In particular, we prove Lemma
2.1.

– In Subsection B.2, we present the expansion manifold in two-layer ANNs. In particular, we prove the Theorem
3.1 in the main.

– In Subsection B.3, we present a case where there is no new global minimum outside of the expansion manifold for
some smooth activation functions. In particular we prove Theorem 4.2 in the main and discuss the implications
for standard activation functions such as sigmoid and tanh.

– In Subsection B.4, we present the symmetry-induced critical points. In particular, we prove the Proposition 4.3
and Proposition 4.4 in the main.

– In Subsection B.5, we present the combinatorial analysis which is used to derive the closed-form formulas and
the limiting behavior of the numbers T and G. In particular, we prove the Proposition 4.5, Lemma 4.6, and we
present the calculations in the Subsection 4.3 in the main.

– In Subsection B.6, we present some generalizations of the two-layer ANN results for the multi-layer ANNs.

A. Further Experimental Results
The code is available at https://github.com/jbrea/SymmetrySaddles.jl. We first present an extension of
the Figure 1 in the main below.

Experimental details for the Figure 1 and 5 in the main. The input of the training data consists of 1681 two-dimensional
points on a regular grid {(x1, x2)|4x1 = −20, . . . , 20, 4x2 = −20, . . . , 20} and target values y =

∑4
i=1 σ(

∑2
j=1 wijxj)

with w11 = 0.6, w12 = 0.5, w21 = −0.5, w22 = 0.5, w31 = −0.2, w32 = −0.6, w41 = 0.1, w42 = −0.6. Student
networks were initialised with the Glorot uniform initialisation (Glorot & Bengio, 2010), trained with Adam (Kingma &
Ba, 2014), and gradients always computed on the full dataset, until reaching a loss below 10−7. To reach efficiently the
local minimum closest to the point found with Adam, we continued optimizing the parameters of the student networks
with the sequential quadratic programming algorithm SLSQP of the NLopt package (Johnson) for a maximal duration of
1000 seconds. The final loss values of all students that converged to a good solution was below 10−15 for every random
seed considered. To obtain a non-trivial teacher network with 3 hidden layers (Fig. 1d-e), we fitted a network with widths
4-4-4 to the function f(x1, x2) = sin(2x1) + x1 + cos(3x2)− 0.4(x2 − 1)2 evaluated on the same two-dimensional grid
as above. The teacher network does not reach zero loss on this data set. To obtain target values for the student networks
we evaluated this teacher network on the two-dimensional grid; hence there exist zero loss configurations for the student
networks.

https://github.com/jbrea/SymmetrySaddles.jl
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Figure 1. A student-teacher regression setting with 2D input and a two-layer teacher network with r∗ = 4 sigmoid neurons with incoming
weight vectors shown as solid black lines and output weights set to 1. black lines: trajectories of the incoming weight vectors with dots
marking their position at convergence, color: output weights at convergence. For mild overparameterization, the algorithm may get
stuck at a local minimum (a), or may find a global minimum (b); whereas for vast overparameterization it always converges to a
global minimum (c). (a&b) Mildly overparameterized networks with width 5 do not reliably find the global minimum. (c) Vastly
overparameterized networks with width 45 find a global minimum by setting some of the output weights to zero or matching the
incoming weight vectors with that of the teacher’s up to a ± factor.

A.1. MNIST Experiments for Two-Layer ANNs with Various Widths

Experimental details for the Figure 2 in the appendix. The training set consisted of the standard MNIST test set,
i.e. 10’000 grayscale images of 28x28 pixels with corresponding labels. The networks had a single hidden layer of
width N with the softplus non-linearity g(x) = log(exp(x) + 1). The networks were initialised with the Glorot uniform
initialisation (Glorot & Bengio, 2010) and trained on the cross-entropy loss with Adam and gradients always computed on
the full dataset. We measured the squared norm of the gradients and the squared norm of the parameter updates.

(a) m = 10 (b) m = 20

(c) m = 100 (d) m = 1000

Figure 2. Network width m impacts whether gradient trajectories approach a saddle or not. For all a-b-c-d, the loss curves are demon-
strated on the left and the norm of the gradient is demonstrated on the right. We observe that the norm of the gradient decreases and then
increases in narrow networks (a-b), indicating an approach to a saddle and then escaping it. We do not observe a sharp non-monotonicity
in the norm of the gradient for wider networks (c-d). Instead we observe short decrease and increase periods in the norm of the gradient
(see the zigzag) (d), which indicates that the gradient trajectories move from one saddle to the next in this regime, yet without getting
very close these saddles.
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For the MNIST experiments, we observe that the gradient trajectories visit a saddle in a narrow network and the duration
of the visit to the saddles becomes shorter as we increase the width (i.e. in (a), we see a longer plateau in the loss curve
compare to (b)). In the excessive overparameterization regime, we observe another behavior change, i.e. we observe a
zigzag behavior on the norm of the gradient, possibly indicating many short visits to the saddles.

A.2. A Detailed Analysis of the Number of Critical Subspaces and the Number of Global Minima Subspaces

In this section, first we present a detailed numerical analysis of the numbers T and G (see Figure 3) and then we present
additional figures for various minimal widths (see Figure 4), expanding the Figure 6 in the main.
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Figure 3. Comparison of the number of critical subspaces G (solid) with the number of global minima subspaces T (dashed) for
m = 10, 15, 20, 25, 30 where x-axis denotes r/m. Each solid line indicates G(r,m), and the dashed lines indicate T (r,m) for
r = 1, . . . ,m. We observe that the maximum G(r,m) is achieved at r ≈ 0.72m.

In Figure 3, we observe an interesting linear relationship between r and m, i.e. for fixed m, G(r,m) is maximized for
r ≈ 0.7m. A refined analysis of these numbers can be useful for studying how much overparameterization is needed to
converge to a global minimum efficiently.
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(a) r∗ = 10 (b) r∗ = 20 (c) r∗ = 30

Figure 4. The ratio of the number of critical subspaces G(r∗ − k,m) to global minima subspaces T (r∗,m) as the width m of the
overparameterized network increases. Plotted for various minimal widths (a) r∗ = 10, (b) r∗ = 20, and (c) r∗ = 30 (as shown in the
main). The ratio of all critical subspaces to the global minima subspaces

∑r∗−1
k=1 G(r∗ − k,m)/T (r∗,m) is shown in blue.

In Figure 4, we observe that the rate of decay to zero is faster is smaller minimal widths (see for example r∗ = 10). This
is consistent with out mathematical analysis, since r∗−1

r∗ increases as r∗ increases, yielding a slower decay to zero (see
the blue curves). We note that the exact implementation of the numbers becomes unstable for r∗ > 35 in our numerical
experiments. Therefore for wider minimal widths, an approximation of the numbers G and T is needed.

A.3. Symmetric Loss Landscape Examples

We present some example symmetric losses R2 → R in Figure 5, expanding Figure 2 in the main. We observe that in
between two partner global minima (red points), there may be more than one saddles emerging on the symmetry subspaces.
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Figure 5. The gradient flow and the landscape and of a permutation-symmetric loss L(w1, w2) = log( 1
2
((w1 + w2 − a)2 + (w1w2 −

b)2) + 1). Red dots: global minima, purple dots: non-global stationary points. Dashed lines represent the symmetry hyperplanes. 1st.
a = 3 and b = 2, the global minima at (2, 1) and (1, 2). 2nd. a = 25 and b = 100, the global minima at (20, 5) and (5, 20). 3rd.
a = −20.1 and b = 2, the global minima at (−20,−0.1) and (−0.1,−20). 4th. a = 3 and b = −10, the global minima at (5,−2) and
(−2, 5).

B. Proofs and Further Discussions
B.1. Further Properties of Symmetric Losses

The most well known property of symmetric losses is the m! multiplicity of the critical points: for a critical point θθθ∗ =
(ϑ∗1, ϑ

∗
2, . . . , ϑ

∗
m) with distinct units ϑ∗i 6= ϑ∗j for all i 6= j, there are m! equivalent critical points induced by permutations

π ∈ Sm. Similarly, every point θθθ with distinct units has m! − 1 partner points with equal loss. For a symmetric loss
function, a fundamental region

R0 := {(ϑ1, . . . , ϑm) ∈ RDm : ϑ1 ≥ . . . ≥ ϑm}

hasm!−1 partner regions where the landscape of the loss is the same up to permutations. Note that above and elsewhere we
use the lexicographic order: for two units ϑ, ϑ′ ∈ RD, we write ϑ > ϑ′ if there exists j ∈ [D] such that ϑi = ϑ′i for all i ∈
[j − 1] and ϑj > ϑ′j ; and ϑ = ϑ′, if ϑi = ϑ′i for all i ∈ [D].

Definition B.1. For a permutation π ∈ Sm, a replicant regionRπ is defined by

Rπ := {(ϑ1, . . . , ϑm) ∈ RDm : ϑπ(1) ≥ . . . ≥ ϑπ(m)}. (1)

We denote by R̊π the interior of the replicant region.

Any two partner points θθθπ ∈ Rπ and θθθπ′ ∈ Rπ′ have the same loss Lm(θθθπ) = Lm(θθθπ′) and they are linked with a
permutation matrix Pπ′◦π−1 : Pπ′◦π−1θθθπ = θθθπ′ .

Note that the lexicographic order is a total order thus it allows to compare any two D-dimensional units. Therefore every
point θθθ ∈ RDm falls in at least one replicant region, i.e.

RDm = ∪π∈SmRπ.

The intersection of all these regions Rπ corresponds to the D-dimensional linear subspace ϑ1 = ϑ2 = · · · = ϑm; more
generally intersections of replicant regions define symmetry subspaces.

As each constraint ϑi = ϑj suppresses D degrees of freedom, we have dim(Hi1,...,ik) = D(m− k + 1). Observe that the
largest symmetry subspaces areHi,j’s since any other symmetry subspace is included in one of these

(
m
2

)
subspaces.



Appendix: Geometry of the Loss Landscape in Overparameterized Neural Networks

#1
<latexit sha1_base64="uwlmCflOX+toSu6BLLK7GYWCbcU=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0GPRi8cK9gOaUDbbSbt0swm7m0IJ/RtePCji1T/jzX/jps1BWx8MPN6b2Z15QcKZ0o7zbZU2Nre2d8q7lb39g8Oj6vFJR8WppNimMY9lLyAKORPY1kxz7CUSSRRw7AaT+9zvTlEqFosnPUvQj8hIsJBRoo3keVMi9Rg1GbiVQbXm1J0F7HXiFqQGBVqD6pc3jGkaodCUE6X6rpNoPzMvMspxXvFShQmhEzLCvqGCRKj8bLHz3L4wytAOY2lKaHuh/p7ISKTULApMZ0T0WK16ufif1091eOtnTCSpRkGXH4Upt3Vs5wHYQyaRaj4zhFDJzK42HRNJqDYx5SG4qyevk06j7l7VG4/XteZdEUcZzuAcLsGFG2jCA7SgDRQSeIZXeLNS68V6tz6WrSWrmDmFP7A+fwB0LZFL</latexit>

#2
<latexit sha1_base64="xD62e1UMBNJKHE+YyMxmG9NgYdw=">AAAB83icbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BLx4jmAdklzA7mU2GzD6Y6Q2EJb/hxYMiXv0Zb/6Ns8keNLGgoajqnukuP5FCo21/W6WNza3tnfJuZW//4PCoenzS0XGqGG+zWMaq51PNpYh4GwVK3ksUp6Evedef3Od+d8qVFnH0hLOEeyEdRSIQjKKRXHdKFY450kGjMqjW7Lq9AFknTkFqUKA1qH65w5ilIY+QSap137ET9DLzomCSzytuqnlC2YSOeN/QiIZce9li5zm5MMqQBLEyFSFZqL8nMhpqPQt90xlSHOtVLxf/8/opBrdeJqIkRR6x5UdBKgnGJA+ADIXiDOXMEMqUMLsSNqaKMjQx5SE4qyevk06j7lzVG4/XteZdEUcZzuAcLsGBG2jCA7SgDQwSeIZXeLNS68V6tz6WrSWrmDmFP7A+fwB1spFM</latexit>

#3
<latexit sha1_base64="oISMn6c79PGwyBLEdujbbRbaRBI=">AAAB83icbVBNS8NAEN3Ur1q/qh69BIvgqSStoMeiF48VbC00oWy2k3bpZhN2J4US+je8eFDEq3/Gm//GTZuDtj4YeLw3szvzgkRwjY7zbZU2Nre2d8q7lb39g8Oj6vFJV8epYtBhsYhVL6AaBJfQQY4CeokCGgUCnoLJXe4/TUFpHstHnCXgR3QkecgZRSN53pQqHAPSQbMyqNacurOAvU7cgtRIgfag+uUNY5ZGIJEJqnXfdRL0M/MiZwLmFS/VkFA2oSPoGyppBNrPFjvP7QujDO0wVqYk2gv190RGI61nUWA6I4pjverl4n9eP8Xwxs+4TFIEyZYfhamwMbbzAOwhV8BQzAyhTHGzq83GVFGGJqY8BHf15HXSbdTdZr3xcFVr3RZxlMkZOSeXxCXXpEXuSZt0CCMJeSav5M1KrRfr3fpYtpasYuaU/IH1+QN3N5FN</latexit>

H1,2
<latexit sha1_base64="IrF4R+JTSkZt87EsfAxrUgKaNPU=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4kJJUQZdFN11WsA9oQ5hMp+3QySTMTMQS8ituXCji1h9x5984abPQ1gMDh3Pu5Z45QcyZ0o7zba2tb2xubZd2yrt7+weH9lGlo6JEEtomEY9kL8CKciZoWzPNaS+WFIcBp91gepf73UcqFYvEg57F1AvxWLARI1gbybcrgxDrCcE8bWZ+6l7Us7JvV52aMwdaJW5BqlCg5dtfg2FEkpAKTThWqu86sfZSLDUjnGblQaJojMkUj2nfUIFDqrx0nj1DZ0YZolEkzRMazdXfGykOlZqFgZnMk6plLxf/8/qJHt14KRNxoqkgi0OjhCMdobwINGSSEs1nhmAimcmKyARLTLSpKy/BXf7yKunUa+5lrX5/VW3cFnWU4ARO4RxcuIYGNKEFbSDwBM/wCm9WZr1Y79bHYnTNKnaO4Q+szx8NUpPJ</latexit>

H2,3
<latexit sha1_base64="csdPQs/y8G8r/ai+4mtAgYA9oM4=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBhZSkFXRZdNNlBfuANoTJdNIOnUzCzEQsIb/ixoUibv0Rd/6NSZuFth4YOJxzL/fM8SLOlLasb6O0sbm1vVPereztHxwemcfVngpjSWiXhDyUAw8rypmgXc00p4NIUhx4nPa92V3u9x+pVCwUD3oeUSfAE8F8RrDOJNesjgKspwTzpJ26SeOymVZcs2bVrQXQOrELUoMCHdf8Go1DEgdUaMKxUkPbirSTYKkZ4TStjGJFI0xmeEKHGRU4oMpJFtlTdJ4pY+SHMntCo4X6eyPBgVLzwMsm86Rq1cvF/7xhrP0bJ2EiijUVZHnIjznSIcqLQGMmKdF8nhFMJMuyIjLFEhOd1ZWXYK9+eZ30GnW7WW/cX9Vat0UdZTiFM7gAG66hBW3oQBcIPMEzvMKbkRovxrvxsRwtGcXOCfyB8fkDEGCTyw==</latexit>

H1,3
<latexit sha1_base64="nbdbnSGbh3MI4d1MIUzfKCOd180=">AAAB+3icbVDLSsNAFL2pr1pfsS7dBIvgQkrSCrosuumygn1AG8JkOmmHTiZhZiKWkF9x40IRt/6IO//GSZuFth4YOJxzL/fM8WNGpbLtb6O0sbm1vVPereztHxwemcfVnowSgUkXRywSAx9JwignXUUVI4NYEBT6jPT92V3u9x+JkDTiD2oeEzdEE04DipHSkmdWRyFSU4xY2s681LlsZhXPrNl1ewFrnTgFqUGBjmd+jcYRTkLCFWZIyqFjx8pNkVAUM5JVRokkMcIzNCFDTTkKiXTTRfbMOtfK2AoioR9X1kL9vZGiUMp56OvJPKlc9XLxP2+YqODGTSmPE0U4Xh4KEmapyMqLsMZUEKzYXBOEBdVZLTxFAmGl68pLcFa/vE56jbrTrDfur2qt26KOMpzCGVyAA9fQgjZ0oAsYnuAZXuHNyIwX4934WI6WjGLnBP7A+PwBDtiTyg==</latexit>

R(1,2,3)
<latexit sha1_base64="fKBVOPy4XnTY0zMy5uPXWVit9fY=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARKpSStIIui25cVrEPaEOYTCft0MkkzEyEErPwV9y4UMStv+HOv3HSZqGtBwYO59zLPXO8iFGpLOvbKKysrq1vFDdLW9s7u3vm/kFHhrHApI1DFoqehyRhlJO2ooqRXiQICjxGut7kOvO7D0RIGvJ7NY2IE6ARpz7FSGnJNY8GAVJjjFhyl7pJxa7Wq42ztOSaZatmzQCXiZ2TMsjRcs2vwTDEcUC4wgxJ2betSDkJEopiRtLSIJYkQniCRqSvKUcBkU4yy5/CU60MoR8K/biCM/X3RoICKaeBpyeztHLRy8T/vH6s/EsnoTyKFeF4fsiPGVQhzMqAQyoIVmyqCcKC6qwQj5FAWOnKshLsxS8vk069Zjdq9dvzcvMqr6MIjsEJqAAbXIAmuAEt0AYYPIJn8ArejCfjxXg3PuajBSPfOQR/YHz+ANYplKs=</latexit>

R(2,1,3)
<latexit sha1_base64="ac1LHGbJ+D2MSvxl5HjV2mBq9J4=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARKpSStIIui25cVrEPaEOYTCft0MkkzEyEErPwV9y4UMStv+HOv3HSZqGtBwYO59zLPXO8iFGpLOvbKKysrq1vFDdLW9s7u3vm/kFHhrHApI1DFoqehyRhlJO2ooqRXiQICjxGut7kOvO7D0RIGvJ7NY2IE6ARpz7FSGnJNY8GAVJjjFhyl7pJpV61q42ztOSaZatmzQCXiZ2TMsjRcs2vwTDEcUC4wgxJ2betSDkJEopiRtLSIJYkQniCRqSvKUcBkU4yy5/CU60MoR8K/biCM/X3RoICKaeBpyeztHLRy8T/vH6s/EsnoTyKFeF4fsiPGVQhzMqAQyoIVmyqCcKC6qwQj5FAWOnKshLsxS8vk069Zjdq9dvzcvMqr6MIjsEJqAAbXIAmuAEt0AYYPIJn8ArejCfjxXg3PuajBSPfOQR/YHz+ANYrlKs=</latexit>

R(2,3,1)
<latexit sha1_base64="OG4fQcaC0X39R8U8PyST6m8LGCM=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARKpSStIIui25cVrEPaEOYTCft0MkkzEyEErPwV9y4UMStv+HOv3HSZqGtBwYO59zLPXO8iFGpLOvbKKysrq1vFDdLW9s7u3vm/kFHhrHApI1DFoqehyRhlJO2ooqRXiQICjxGut7kOvO7D0RIGvJ7NY2IE6ARpz7FSGnJNY8GAVJjjFhyl7pJpV5tVO2ztOSaZatmzQCXiZ2TMsjRcs2vwTDEcUC4wgxJ2betSDkJEopiRtLSIJYkQniCRqSvKUcBkU4yy5/CU60MoR8K/biCM/X3RoICKaeBpyeztHLRy8T/vH6s/EsnoTyKFeF4fsiPGVQhzMqAQyoIVmyqCcKC6qwQj5FAWOnKshLsxS8vk069Zjdq9dvzcvMqr6MIjsEJqAAbXIAmuAEt0AYYPIJn8ArejCfjxXg3PuajBSPfOQR/YHz+ANYvlKs=</latexit>
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<latexit sha1_base64="P8Ekq6sS7qdx89hMrQ+2jS2lIdE=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARKpSStIIui25cVrEPaEOYTCft0MkkzEyEErPwV9y4UMStv+HOv3HSZqGtBwYO59zLPXO8iFGpLOvbKKysrq1vFDdLW9s7u3vm/kFHhrHApI1DFoqehyRhlJO2ooqRXiQICjxGut7kOvO7D0RIGvJ7NY2IE6ARpz7FSGnJNY8GAVJjjFhyl7pJpVGtV+2ztOSaZatmzQCXiZ2TMsjRcs2vwTDEcUC4wgxJ2betSDkJEopiRtLSIJYkQniCRqSvKUcBkU4yy5/CU60MoR8K/biCM/X3RoICKaeBpyeztHLRy8T/vH6s/EsnoTyKFeF4fsiPGVQhzMqAQyoIVmyqCcKC6qwQj5FAWOnKshLsxS8vk069Zjdq9dvzcvMqr6MIjsEJqAAbXIAmuAEt0AYYPIJn8ArejCfjxXg3PuajBSPfOQR/YHz+ANYxlKs=</latexit>
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<latexit sha1_base64="AojLB7IHyqeSx87VXQGs+YMjFSA=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARKpSStIIui25cVrEPaEOYTCft0MkkzEyEErPwV9y4UMStv+HOv3HSZqGtBwYO59zLPXO8iFGpLOvbKKysrq1vFDdLW9s7u3vm/kFHhrHApI1DFoqehyRhlJO2ooqRXiQICjxGut7kOvO7D0RIGvJ7NY2IE6ARpz7FSGnJNY8GAVJjjFhyl7pJpVG1q/WztOSaZatmzQCXiZ2TMsjRcs2vwTDEcUC4wgxJ2betSDkJEopiRtLSIJYkQniCRqSvKUcBkU4yy5/CU60MoR8K/biCM/X3RoICKaeBpyeztHLRy8T/vH6s/EsnoTyKFeF4fsiPGVQhzMqAQyoIVmyqCcKC6qwQj5FAWOnKshLsxS8vk069Zjdq9dvzcvMqr6MIjsEJqAAbXIAmuAEt0AYYPIJn8ArejCfjxXg3PuajBSPfOQR/YHz+ANYvlKs=</latexit>
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<latexit sha1_base64="2MHiFyZvUn8BwwkOBpZxDrwKxJE=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARKpSStIIui25cVrEPaEOYTCft0MkkzEyEErPwV9y4UMStv+HOv3HSZqGtBwYO59zLPXO8iFGpLOvbKKysrq1vFDdLW9s7u3vm/kFHhrHApI1DFoqehyRhlJO2ooqRXiQICjxGut7kOvO7D0RIGvJ7NY2IE6ARpz7FSGnJNY8GAVJjjFhyl7pJxa42qvWztOSaZatmzQCXiZ2TMsjRcs2vwTDEcUC4wgxJ2betSDkJEopiRtLSIJYkQniCRqSvKUcBkU4yy5/CU60MoR8K/biCM/X3RoICKaeBpyeztHLRy8T/vH6s/EsnoTyKFeF4fsiPGVQhzMqAQyoIVmyqCcKC6qwQj5FAWOnKshLsxS8vk069Zjdq9dvzcvMqr6MIjsEJqAAbXIAmuAEt0AYYPIJn8ArejCfjxXg3PuajBSPfOQR/YHz+ANYrlKs=</latexit>

✓✓✓
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Figure 6. Replicant regions Rπ and symmetry sub-
spaces Hi,j for the 3-dimensional parameter space
R3. An example gradient flow trajectory starting at
θθθ ∈ R(3,2,1) and arriving at a minimum θθθ∗ (solid
curve) and its partner trajectory starting at a partner
point θθθ(1,2) ∈ R(3,1,2) thus arriving at a partner mini-
mum θθθ∗(1,2) (dashed curve) are shown.

For D = 1, the largest symmetry subspaces have codimension 1.
As a result, any path from Rπ to any another replicant region has
to cross a symmetry subspace (see Figure 6). However, for D >
1, the symmetry subspaces have codimension at least D; thus there
exist paths connecting replicant regions without crossing symmetry
subspaces.
Lemma B.1 (Lemma 2.1 in the main). Let Lm : RDm → R be a
symmetric loss on m units thus a C1 function and let ρρρ : R≥0 →
RDm be its gradient flow. If ρρρ(0) ∈ Hi1,...,ik , the gradient flow stays
inside the symmetry subspace, i.e. ρρρ(t) ∈ Hi1,...,ik for all t > 0.
If ρρρ(0) /∈ Hi,j for all i 6= j ∈ [m], that is outside of all symmetry
subspaces, the gradient flow does not visit any symmetry subspace in
finite time.

Proof. We will use the identity that comes from chain rule
∇Lm(Pπθθθ) = Pπ∇Lm(θθθ). We will show that if θθθ =
(ϑ1, · · · , ϑm) ∈ Hi1,...,ik where ϑi1 = · · · = ϑik , its gradient sat-
isfies ∇i1Lm(θθθ) = . . . = ∇ikLm(θθθ) therefore the gradient flow re-
mains on the symmetry subspace for all times.

We denote a transposition by (i, j) ∈ Sm, which is a permutation that
only swaps the units i and j. Assume θθθ ∈ Hi,j , that is θθθ = P(i,j)θθθ,
and thus

∇Lm(θθθ) = ∇Lm(P(i,j)θθθ) = P(i,j)∇Lm(θθθ),

and in particular ∇iLm(θθθ) = ∇jLm(θθθ). This entails that for θθθ ∈ Hi1,...,ik , we have ∇Lm(θθθ) ∈ Hi1,...,ik as well, which
completes the first part of the proof.

We now prove the second part of the claim by contradiction. Suppose now that γγγ(0) /∈ Hi,j for any i 6= j ∈ [k] and
t0 <∞ be the first time such that γγγ(t0) ∈ Hi′,j′ for some i′ 6= j′ ∈ [k]. Let γ̃γγ(t) = P(i′,j′)γγγ(t), that is the symmetric path
with respect to Hi′,j′ . Then one sees that γγγ and γ̃γγ intersect for the first time at t0 on Hi′,j′ and then γγγ(t) = γ̃γγ(t) ∈ Hi′,j′
for all t > t0, as we showed in the first part of the proof. Since ∇Lm is continuous, Picard-Lindelöf Theorem applies
on a neighbourhood of γγγ(t0), which ensures the unicity of the gradient flow on [t0 − ε, t0] for some ε > 0. Thus,
γγγ(t0 − ε) = γ̃γγ(t0 − ε), which contradicts the fact that t0 is the first time when γγγ intersects γ̃γγ.

We write the gradient of Lm in the block form

∇Lm(θθθ) = (∇1L
m(θθθ), . . . ,∇mLm(θθθ))

where for all j ∈ [m],
∇jLm(θθθ) = (∂D(j−1)+1L

m(θθθ), . . . , ∂D(j−1)+DL
m(θθθ))

is a D-dimensional vector.
Remark B.1. Let ρρρ(0) ∈ Rπ for some π ∈ Sm. In the case of 1-dimensional units, D = 1, we have ρρρ(t) ∈ Rπ for all
t ∈ R+. Hence, in this case, the gradient flow can only be affected by the critical points of a single replicant region.

Proof. Indeed, assume that ρρρ(0) = (ϑ1(0), . . . , ϑm(0)) ∈ Rπ , i.e. ϑπ1(0) ≥ · · · ≥ ϑπm(0) and
ρρρ(1) = (ϑ1(1), . . . , ϑm(1)) ∈ Rπ′ for another permutation π′, i.e. ϑπ′1(0) ≥ · · · ≥ ϑπ′m(0). Since π 6= π′, there ex-
ists a pair (i, j) such that ϑi(0) ≥ ϑj(0) and ϑj(1) ≥ ϑi(1). Thus we have

(ϑi − ϑj)(0) ≥ 0 ≥ (ϑi − ϑj)(1).

Because the gradient flow ρρρ is continuous (since Lm is C1) there exists a time t0 such that (ϑi − ϑj)(t0) = 0, i.e.
ρρρ(t0) ∈ Hi,j , which yields a contradiction.

Remark B.2. In the case of 1-dimensional units, D = 1, if ρρρ(0) ∈ Rπ for some π ∈ Sm, we have ρρρ(t) ∈ Rπ for all
t ∈ R+. Hence, in this case, the gradient flow ρρρ can only be affected by the critical points of a single replicant region.
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B.2. The Expansion Manifold in Two-Layer ANNs

Theorem B.2 (Theorem 3.1 in the main). For m ≥ r, the expansion manifold Θr→m(θθθr) of an irreducible point θθθr

consists of exactly1

T (r,m) :=

m−r∑
j=0

∑
sum(s)=m
ki≥1,bi≥1

(
m

k1, ..., kr, b1, ..., bj

)
1

c1!...cm−r!

distinct affine subspaces (none is including another one) of dimension at least min(din, dout)(m−r), where ci is the number
of occurences of i among (b1, ..., bj).

For m > r, Θr→m(θθθr) is connected: any pair of distinct points θθθ,θθθ′ ∈ Θr→m(θθθr) is connected via a union of line
segments γγγ : [0, 1]→ Θr→m(θθθr) such that γγγ(0) = θθθ and γγγ(1) = θθθ′.

Proof. The proof of this theorem is divided in two parts. In Proposition B.3, we count the number of affine subspaces in
Θr→m(θθθr) and in Theorem B.4, we prove the connectivity of the r → m expansion manifold for m > r.

Proposition B.3. For m ≥ r, Θr→m(θθθr) has exactly

T (r,m) :=

m−r∑
j=0

∑
sum(s)=m
ki≥1,bi≥1

(
m

k1, . . . , kr, b1, . . . , bj

)
1

cb

distinct affine subspaces (none is including another one) of dimension at least min(din, dout)(m − r). Here cb :=
c1!c2! · · · cm−r! is a normalization factor where ci is the number of occurence of i among (b1, . . . , bj).

Proof. The dimension of the subspace Γs(θθθ
r) is

r∑
t=1

(kt − 1)dout +

j∑
t=1

(bt − 1)dout + jdin = (m− r − j) dout + j din ≥ min(din, dout)(m− r).

It is enough to count the distinct configurations of the incoming weight vectors

(w1, . . . , w1︸ ︷︷ ︸
k1

, . . . , wr, . . . , wr︸ ︷︷ ︸
kr

, w′1, . . . , w
′
1︸ ︷︷ ︸

b1

, . . . , w′j , . . . , w
′
j︸ ︷︷ ︸

bj

)

since the outgoing weight vectors configuration follows that of the incoming ones. For this particular tuple, the number
of configurations is m!

k1!···kr!b1!···bj !
1
cb

where the normalization factor cb = c1! · · · cm−r! comes from the following sub-
configurations: if b1 = b2, then we need to divide by 2 since in that case one can swap w′1 with w′2. More generally, if
b`1 = b`2 = . . . = b`ci = i, we need to divide by the number of permutations between the groups of i incoming weight
vectors

(w′`1 , . . . , w
′
`1︸ ︷︷ ︸

i

, . . . , w′`ci , . . . , w
′
`ci︸ ︷︷ ︸

i

)

︸ ︷︷ ︸
ci

.

There are ci groups with the repetition of i zero-type incoming weight vectors (such that their summation is fixed at zero)
thus we have to cancel out the recounting coming from these groups via a division by 1/ci!. Summing over all possible
tuples (k1, . . . , kr, b1, . . . , bj), we find the formula.

Theorem B.4. Form > r, Θr→m(θθθr) is connected: any pair of distinct points θθθ,θθθ′ ∈ Θr→m(θθθr) is connected via a union
of line segments γγγ : [0, 1]→ Θr→m(θθθr) such that γγγ(0) = θθθ and γγγ(1) = θθθ′.

1(n1+...+nr
n1,...,nr

)
denotes the coefficient (n1+...+nr)!

n1!...nr !
.
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Proof. We first prove the case m = r + 1. Let θθθr = (w1, . . . , wr, a1, . . . , ar) and consider the following set of points

Θ̃r→r+1(θθθr) := {Pπθθθr+1 : θθθr+1 = (w0, w1, w2, . . . , wr, 0, a1, a2, . . . , ar); π ∈ Sr, w0 ∈ Rdin}

which is a subset of the expansion manifold Θr→r+1(θθθr). We will show that by construction that a point θθθ0 ∈ Θ̃r→r+1(θθθr)

such that θθθ0 = (w0, w1, w2, . . . , wr, 0, a1, a2, . . . , ar) is connected to any other point θ̃θθ = Pπθθθ0 ∈ Θ̃r→r+1(θθθr) via a path
in Θr→r+1(θθθr). To do so we first show that a neighbor where the neuron ϑ0 = (w0, 0) is swapped with ϑi = (wi, ai)

θθθ1 = (wi, w1, . . . , wi−1, w0, wi+1, . . . , wr, ai, a1, . . . , ai−1, 0, ai+1, . . . , ar)

can be reached in three steps using the following line segments υυυ(1)1 ,υυυ
(1)
2 ,υυυ

(1)
3 : [0, 1]→ Θr→r+1(θθθr)

υυυ
(1)
1 (α) = (α(wi − w0) + w0, w1, w2, . . . , wr, 0, a1, a2, . . . , ar)

υυυ
(1)
2 (α) = (wi, w1, . . . , wi−1, wi, wi+1, . . . , wr, αai, a1, . . . , ai−1, (1− α)ai, ai+1, . . . , ar)

υυυ
(1)
3 (α) = (wi, w1, . . . , wi−1, α(w0 − wi) + wi, wi+1, . . . , wr, ai, a1, . . . , ai−1, 0, ai+1, . . . , ar)

where we have υυυ(1)1 (0) = θθθ0, υυυ(1)1 (1) = υυυ
(1)
2 (0), υυυ(1)2 (1) = υυυ

(1)
3 (0), and υυυ(1)3 (1) = θθθ1. In particular, we constructed a path

γγγ(1) by glueing three line segments at their end points

γγγ(1)(t) = υυυ
(1)
1 (3t)1t∈[0,1/3) + υυυ

(1)
2 (3(t− 1/3))1t∈[1/3,2/3) + υυυ

(1)
3 (3(t− 2/3))1t∈[2/3,1]

where γγγ(1)(0) = θθθ0 and γγγ(1)(1) = θθθ1. Note that going from θθθ0 → θθθ1, we swapped the neurons ϑ0 and ϑi. Moreover, it
is well known that any permutation can be written as a composition of transpositions (permutations leaving all elements
unchanged but two) and that (i j) = (0 j) ◦ (0 i) ◦ (0 j). In particular, we can reach θ̃θθ only by swapping ϑ0 with other
neurons, which corresponds to some other paths γγγ(2), . . . , γγγ(r) made of three line segments. Glueing these paths, we
observe that Θ̃r→r+1(θθθr) is connected via paths in Θr→r+1(θθθr). To finish the case for m = r + 1, it is enough to show
that any point θθθ ∈ Θr→r+1(θθθr) \ Θ̃r→r+1(θθθr)

θθθ = Pπ(wi, wi, w1, . . . , wr, αai, (1− α)ai, a1, . . . , ar)

is connected (via a line segment) to a point in Θ̃r→r+1(θθθr) which is simply

θ̃θθ = Pπ(w0, wi, w1, . . . , wr, 0, ai, a1, . . . , ar).

Next we will prove for the general case m ≥ r + 1 by induction. We assume that Θr→m(θθθr) is connected and we will
show that Θr→m+1(θθθr) is also connected. First we show the connectivity of the points in the following set

Θ̃r→m+1(θθθr) := {Pπθθθm+1 : θθθm+1 = (w1, . . . , w1︸ ︷︷ ︸
k1

, . . . , wr, . . . , wr︸ ︷︷ ︸
kr

, w′1, . . . , w
′
j︸ ︷︷ ︸

j+1

, a11, . . . a
k1
1︸ ︷︷ ︸

k1

, . . . , a1r, . . . a
kr
r︸ ︷︷ ︸

kr

, 0, . . . , 0︸ ︷︷ ︸
j+1

)

where ki ≥ 1, j ≥ 0, k1 + . . .+ kr + j = m,

kj∑
i=1

aij = aj , and π ∈ Sm+1}

which is a subset of Θr→m+1(θθθr). From the induction hypothesis, we have the connectivity of the manifold Θr→m(θθθr).
An element θ̃θθ ∈ Θ̃r→m+1(θθθr) can be written as

θ̃θθ = Pπ̃(w1, . . . , w1︸ ︷︷ ︸
k1

, . . . , wr, . . . , wr︸ ︷︷ ︸
kr

, w′1, . . . , w
′
j︸ ︷︷ ︸

j

, w0︸︷︷︸
1

, a11, . . . a
k1
1︸ ︷︷ ︸

k1

, . . . , a1r, . . . a
kr
r︸ ︷︷ ︸

kr

, 0, . . . , 0︸ ︷︷ ︸
j+1

),

for some j ≥ 0 and π̃ ∈ Sm+1. For a fixed w0 at a fixed position, there is a bijection Θ̃r→m+1(θθθr) → Θr→m(θθθr) that
sends θ̃θθ to

θθθ = Pπ(w1, . . . , w1︸ ︷︷ ︸
k1

, . . . , wr, . . . , wr︸ ︷︷ ︸
kr

, w′1, . . . , w
′
j︸ ︷︷ ︸

j

, a11, . . . a
k1
1︸ ︷︷ ︸

k1

, . . . , a1r, . . . a
kr
r︸ ︷︷ ︸

kr

, 0, . . . , 0︸ ︷︷ ︸
j

)
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for some π ∈ Sm, i.e. θ̃θθ where w0 and its associated 0 outgoing weight vector have been dropped. In particular, any
two points of Θ̃r→m+1(θθθr) with the same w0 component at the same position are connected as a consequence of this
correspondence and the connectivity of Θr→m(θθθr). Moreover, we note that θ̃θθ ∈ Θ̃r→m+1(θθθr) is connected via a line
segment in Θ̃r→m+1(θθθr) to every other point in Θ̃r→m+1(θθθr) whose components are the same as θ̃θθ except for w0. This
straightforwardly generalizes for different positions of w0 and this establishes the connectivity of Θ̃r→m+1(θθθr).

Finally, we pick a point θθθ ∈ Θr→m+1(θθθr) that is

θθθ = Pπ(w1, . . . , w1︸ ︷︷ ︸
k1

, . . . , wr, . . . , wr︸ ︷︷ ︸
kr

, w′1, . . . , w
′
1︸ ︷︷ ︸

b1

, . . . , w′j , . . . , w
′
j︸ ︷︷ ︸

bj

, a11, . . . a
k1
1︸ ︷︷ ︸

k1

, . . . , a1r, . . . a
kr
r︸ ︷︷ ︸

kr

, α1
1, . . . , α

b1
1︸ ︷︷ ︸

b1

, . . . , α1
j , . . . , α

bj
j︸ ︷︷ ︸

bj

).

for some π ∈ Sm+1. Note that θθθ is connected to

θ̃θθ = Pπ(w1, . . . , w1︸ ︷︷ ︸
k1

, . . . , wr, . . . , wr︸ ︷︷ ︸
kr

, w′1, . . . , w
′
1︸ ︷︷ ︸

b1

, . . . , w′j , . . . , w
′
j︸ ︷︷ ︸

bj

, a11, . . . a
k1
1︸ ︷︷ ︸

k1

, . . . , a1r, . . . a
kr
r︸ ︷︷ ︸

kr

, 0, . . . , 0︸ ︷︷ ︸
b1

, . . . , 0, . . . , 0︸ ︷︷ ︸
bj

),

which is in Θ̃r→m+1(θθθr). We have shown that all points in Θr→m+1(θθθr) are connected, which completes the induction
step thus the proof.

B.3. No New Global Minimum

The following assumption, only made in Theorem ??, ensures that the activation function σ has no specificity that yields
other invariances than the symmetries between units, e.g. σ cannot be even or odd.

Assumption A. Let σ be a smooth activation function. We suppose that σ(0) 6= 0, that σ(n)(0) 6= 0 for infinitely many
even and odd values of n ≥ 0, where σ(n) denotes the n-th derivative.

The next lemma contains the main argument to prove that when considering an overparametrized 2-layers neural network,
no new global minima are created besides those coming from invariances.

Lemma B.5. Suppose that the activation function σ satisfies the Assumption A. If for some pairwise distinct nonzero
β1, . . . , βk ∈ R and some constant c ∈ R we have g(α) :=

∑k
`=1 a`σ(αβ`) = c for all α ∈ R, then a` = 0 for all ` ∈ [k].

Proof. We reorder the indices such that for all ` ∈ [k − 1], either |β`| > |β`+1|, or β` = −β`+1 such that |a`| ≥ |a`+1| (if
the equality holds the labelling between the two is not important). We distinguish the four following cases:

1. |β1| > |β2|,
2. β1 = −β2 and |a1| > |a2|,
3. β1 = −β2 and a1 = a2,

4. β1 = −β2 and a1 = −a2.

Note that there cannot be more that two indices ` with same |β`| and that 1. 2. 3. and 4. above are disjoint and cover all
the possible cases.

Suppose that 1. holds. Note that

g(n)(0) =

k∑
`=1

a`β
n
` σ

(n)(0) = 0,

for all n ≥ 1, by assumption. On the other hand, the triangle inequality yields that

|g(n)(0)| ≥

|a1βn1 | −
∣∣∣∣∣∣
∑
` 6=1

a`β
n
`

∣∣∣∣∣∣
 |σ(n)(0)| ≥

|a1βn1 | − |βn2 |∑
` 6=1

|a`|

 |σ(n)(0)|.
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One can always choose n0 ≥ 1 large enough such that σ(n0)(0) 6= 0 and

|β1| > |a1|−1/n0 |β2|

∑
` 6=`1
|a`|

1/n0

,

so that |g(n)(0)| > 0, which is a contradiction with the fact that g ≡ c. Hence a1 = 0. This shows the claim in the
particular situation where all |β`|’s are distinct.

One can deal with case 2. using that |a1| > |a2|, writing

|g(n)(0)| ≥

(|a1| − |a2|)|βn1 | − |β3|
∑
` 6=1,2

|a`|

 |σ(n)(0)|.

The reasoning is then identical to 1.

In the case 3., since σ has infinitely many non-zero even derivatives at 0, we use that a1β2n
1 + a2β

2n
2 = 2a1β

2n
1 to write

|g(2n)(0)| ≥

(2|a1|)|β2n
1 | −

∑
` 6=1,2

|a`β2n
` |

 |σ(2n)(0)|,

then choose n large enough to argue as above that a1 = a2 = 0. We can thus eliminates these terms from the definition of
g and go on with the argument.

In the case 4., if σ has infinitely many non-zero odd derivatives at 0, we apply the same reasoning as in 3. to show that
a1 = a2 = 0.

Since σ has infinitely many even and infinitely many odd non-zero derivatives at 0, we can iterate the argument and the
proof is over since the four cases above cover all possible cases.

When σ does not satisfy Assumption A, the proof above allows us to derive the following results:

Lemma B.6. If σ is analytic such that σ(n)(0) 6= 0 for infinitely many even n ≥ 0 but only finitely many odd n ≥ 1, then
the function g in Lemma B.5 can be written as

g(α) =

k̃∑
`=1

ã`σ̃(αβ̃`),

where σ̃ is an odd polynomial, the ã`’s are nonzero and the |β`|’s are pairwise distinct.

Similarly, if σ(n)(0) 6= 0 for infinitely many odd n ≥ 1 but only finitely many even n ≥ 0, then the function g in Lemma B.5
can be written as

g(α) =

k̃∑
`=1

ã`σ̃(αβ̃`),

where σ̃ is an even polynomial, the ã`’s are nonzero and the |β`|’s are pairwise distinct.

Proof. Suppose that σ(2n+1)(0) 6= 0 for only finitely many n ≥ 0. In the proof of Lemma B.5, the only problematic
situation is 4., that is β1 = −β2 and a1 = −a2. In particular, they cancel out in the even derivatives of g, that is

g(2n)(0) = σ(2n)(0)
∑
` 6=1,2

a`β
2n
` .
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If β3, a3, β4, a4 do not fall into case 4. from the proof of Lemma B.5, then one can show with the same argument therein
that a3 = a4 = 0. Therefore, the problem reduces to the situation where k is even, β2`−1 = −β2` and a2`+1 = −a2`+2

for all ` ∈ [k/2]. We can then rewrite g as

g(α) =

k̃∑
`=1

ã`σ̃(αβ̃`),

where k̃ ≤ k/2, ã` := a2`−1, β̃` := β2`−1 and σ̃(x) := σ(x)− σ(−x). The function σ̃ is analytic and locally polynomial
around 0, therefore is a polynomial on R and the |β̃`|’s are pairwise distinct.

When the even derivatives eventually vanish at 0 instead, then the problematic situation is the 3. from Lemma B.5 and the
function becomes

g(α) =

k/2∑
`=1

ã`σ̃(αβ̃`),

where ã` := a2`−1, β̃` := β2`−1 and σ̃(x) := σ(x) + σ(−x) with σ̃ polynomial as above.

The case of the sigmoid activation σ(x) = 1/(1 + e−x). In this case, σ(x) = 1/2 + tanh(x) and tanh is an odd
function, i.e. σ(2n)(0) = 0 for all n ≥ 1. Hence, σ̃(x) = σ(x) + σ(−x) = 1 for all x ∈ R and one can construct the null
function with already four β’s satisfying the constraints: a1σ(β1x) + a1σ(−β1x) + a3σ(β3x) + a3σ(−β3x) = 0 as soon
as a1 = −a3, such that |β1| 6= |β3|. (One could then also achieve this for any even p ≥ 4 such functions by tuning the
a`’s.)

The case of the softplus activation σ(x) = ln(1 + ex). The Softplus function is the primitive of the sigmoid such that
σ(x) =

∫ x
−∞

1
1+e−u du. Therefore, σ(2n+1)(0) = 0 when n ≥ 1. In particular, σ̃(x) = σ(x) − σ(−x) = x for all

x ∈ R. One can thus obtain the null function with four (or a strictly greater even number) β’s satisfying the constraints:
a1σ(β1x) − a1σ(−β1x) + a3σ(β3x) − a3σ(−β3x) = 0, as soon as a1β1 + a3β3 = 0, where |β1| 6= |β3| are pairwise
distinct.

The case of the tanh activation function σ(x) = (ex − e−x)/(ex + e−x). Since σ is an odd function, σ̃(x) = σ(x) +
σ(−x) = 0 for all x ∈ R and therefore one can achieve the null function with two (or a strictly greater even number) β’s
satisfying the constraints: a1σ(β1x)− a1σ(−β1x).

We stress that for the three functions above, there is no other way to obtain the null function (i.e. the coefficients β`’s and
a`’s have to be all in case 3. or case 4. depicted in the proof of Lemma B.5, according to the derivatives of σ).

Recall that we consider the loss Lmµ where µ is an input data distribution with support Rdin .

Theorem B.7 (Theorem 4.2 in the main). Suppose that the activation function σ satisfies the Assumption A. For m > r∗,
let θθθ be an m-neuron point, and θθθ∗ be a unique r∗-neuron global minimum up to permutation, i.e. Lr

∗

µ (θθθ∗) = 0. If
Lmµ (θθθ) = 0, then θθθ ∈ Θr∗→m(θθθ∗).

Proof. For x ∈ Rdin , let h(x) :=
∑m
j=1 ajσ(wj · x)−∑m∗

j=1 a
∗
jσ(w∗j · x) and note that this function is zero on Rdin . Since

θθθ∗ is irreducible, we know that the w∗j ’s are pairwise distinct, and the a∗j ’s are nonzero. We can always group terms such
that, wlog, the wj’s are nonzero, pairwise distinct and the aj’s are nonzero, and we remain in the expansion manifold, as
we now argue: we have that

h(x) =

m+m∗∑
j=1

ajσ(wj · x),

where we set aj = −a∗j−m and wj = w∗j−m for j ∈ {m+ 1, . . . ,m+m∗}. If some of the wj’s appear several times, we
group them together and if some are zero vectors, we summarize them in a constant c ∈ R and arrive at

h(x) =

M∑
j=1

Ajσ(Wj · x) = c,
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with M ≤ m + m∗, such that Wi 6= Wj for all i 6= j ∈ [M ] with Wj 6= (0, . . . , 0)T. Proving the claim, i.e. that
θθθ ∈ Θr∗→m(θθθ∗), is now equivalent to showing that Aj = 0 for all j ∈M .

If din = 1, we simply apply Lemma B.5 which shows that Aj = 0 for all j ∈ [M ].

Suppose now that din > 1. Let ε > 0 and let tε = (1, ε, ε2, . . . , εM )T. We define

hε(α) :=

M∑
j=1

Ajσ(αWj · tε), α ∈ R.

We claim that Lemma B.5 applies to hε, that is, the elements in {Wj · tε; j ∈ [M ]} are pairwise distinct for all ε > 0 small
enough. Indeed, by contradiction, suppose that there exists a positive decreasing sequence (εn)n≥1 such that limn→∞ εn =
0 and W1 · tεn = W2 · tεn . Then (W1)1 + O(εn) = (W2)1 + O(εn) where (Wj)k denotes the k-th component of Wj .
Choosing n large enough enforces (W1)1 = (W2)1. It suffices then to explicit the terms of order εn in the identity and to
reason identically since the rest is O(ε2n). This implies that W1 = W2, which is a contradiction with the assumption that
the vectors Wj are pairwise distinct.

Hence, by Lemma B.5 applied on hε, we have that Aj = 0 for all j ∈ [M ], which concludes the proof.

Remark B.3. The theorem above does not apply to the sigmoid, the softplus and the tanh activation functions, since
none of these satisfy Assumption A. Nonetheless, we discussed above the theorem how to reconstruct a neural network
function with these activations, with parameters that have to satisfy some explicit constraints depending on the activation
(in particular, every w′ in the bigger network has to be either equal to w or −w of the smaller network). By considering
the extended expansion manifolds of these activation functions, comprised of the classical expansion manifold and these
new points, Theorem B.7 holds true, that is, the extended expansion manifold is exactly the set of global minima.

B.4. Symmetry-Induced Critical Points

We will prove the Propositions 4.3 and 4.4 in the main. Recall that θθθr∗ = (w∗1 , . . . , w
∗
r , a
∗
1, . . . , a

∗
r) denotes an irreducible

critical point of Lr.

Proposition B.8 (Proposition 4.3 in the main). The expansion manifold Θr→m(θθθr∗) is a union of

G(r,m) :=
∑

k1+...+kr=m
ki≥1

(
m

k1, . . . , kr

)

distinct non-intersecting affine subspaces of dimension (m− r) and all points therein are critical points of Lm.

Proof. First, we show that Θr→m(θθθr∗) contains G(r,m) non-intersecting affine subspaces of dimension (m − r). Recall
that by definition, we have

Θr→m(θθθr∗) =
⋃

s=(k1,...,kr)
π∈Sm

PπΓs(θθθ
r
∗)

where Γs(θθθ
r
∗) contains the points in the set

{(w∗1 , . . . , w∗1︸ ︷︷ ︸
k1

, . . . , w∗r , . . . , w
∗
r︸ ︷︷ ︸

kr

, β1
1a
∗
1, . . . , β

k1
1 a∗1︸ ︷︷ ︸

k1

, . . . , β1
ra
∗
r , . . . , β

kr
r a
∗
r︸ ︷︷ ︸

kr

) :

kt∑
i=1

βit = 1 for t ∈ [r]}.

Observe that this is an affine subspace. Its dimension is given by the number of free parameters, that is (k1 − 1) + · · · +
(kr − 1) = m − r. All its permutations PπΓs(θθθ

r
∗) are also affine subspaces with the same dimension. For two of these

subspaces to intersect, there should be a point contained in both subspaces. However, observe that the incoming weight
vectors for two distinct subspaces are never the same thus an intersection point is not possible.
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For the number of these subspaces, it is enough to count the distinct configurations of the incoming weight vectors, since
the outgoing weight vectors follow the incoming ones. The formula for the number of distinct permutations of

(w∗1 , . . . , w
∗
1︸ ︷︷ ︸

k1

, w∗2 , . . . , w
∗
2︸ ︷︷ ︸

k2

, . . . , w∗r , . . . , w
∗
r︸ ︷︷ ︸

kr

).

is m!
k1!···kr! for a given tuple (k1, . . . , kr) with ki ≥ 1 and k1 + · · · + kr = m. Summing over all such tuples, we find the

formula for G(r,m).

Second, we will show that all points in Θr→m(θθθr∗) are critical. To do so we show that all points θθθm∗ ∈ Γs(θθθ
r
∗) are critical,

then since ∇Lm(Pπθθθm∗ ) = Pπ∇Lm(θθθm∗ ) = 0, we obtain the result for all points in Θr→m(θθθr∗). For i ∈ [r], we denote the
gradient components with respect to the i-th incoming weight vector and the i-th outgoing weight vector as follows

∇wi Lr(θθθr∗) =
(a∗i )

T

N

∑
(x,y)∈Trn

c′(f (2)(x|θθθr∗), y)σ′(w∗i · x)x,

∇aiLr(θθθr∗) =
1

N

∑
(x,y)∈Trn

c′(f (2)(x|θθθr∗), y)σ(w∗i · x).

By introducing the dout × din matrix U and the dout-dimensional vector V as

U(w) :=
1

N

∑
(x,y)∈Trn

c′(f (2)(x|θθθr∗), y)σ′(w · x)x,

V (w) :=
1

N

∑
(x,y)∈Trn

c′(f (2)(x|θθθr∗), y)σ(w · x).

we have ∇wi Lr(θθθr∗) = (a∗i )
TU(w∗i ) and ∇aiLr(θθθr∗) = V (w∗i ). Since θθθr∗ is a critical point, we have (a∗i )

TU(w∗i ) = 0
and V (w∗i ) = 0 for all i ∈ [r]. For θθθm∗ ∈ Γs(θθθ

r
∗), we have f (2)(x|θθθm∗ ) = f (2)(x|θθθr∗) and we write down the gradient

components for Lm at θθθm∗

∇wKi+jL
m(θθθm∗ ) =

βji (a
∗
i )
T

n

∑
(x,y)∈Trn

c′(f (2)(x|θθθm∗ ), y)σ′(w∗i · x)x = βji (a
∗
i )
TU(w∗i )

∇aKi+jL
m(θθθm∗ ) =

1

n

∑
(x,y)∈Trn

c′(f (2)(x|θθθm∗ ), y)σ(w∗i · x) = V (w∗i )

where Ki = k1 + · · ·+ ki−1 and j ∈ [ki] for all i ∈ [r]. Since all gradient components are zero, thus θθθm∗ is a critical point
of Lm.

Proposition B.9 (Proposition 4.4 in the main). For twice-differentiable c and σ, for all θθθm∗ ∈ Θr→m(θθθr∗), the spectrum of
the Hessian ∇2Lm(θθθm∗ ) has (m− r) zero eigenvalues. Moreover, if θθθr∗ is a strict saddle, then all points in Θr→m(θθθr∗) are
also strict saddles.

Proof. Because any θθθm∗ ∈ Θr→m(θθθr∗) lies in an equal-loss affine subspace of dimension (m − r), it has at least (m − r)
zero eigenvalues in the Hessian.

For θθθr∗ that is a strict saddle of Lr, we have an eigenvector β such that βT∇2Lr(θθθr∗)β < 0. Since Θr→m(θθθr∗) is an equal-
loss manifold where all the points have the same loss as θθθr∗, we have Lr(θθθr∗) = Lm(θθθm∗ ) = Lm(Uθθθr∗) where U is a linear
map. Finally, we have (Uβ)T∇2Lm(θθθm∗ )Uβ = βT∇2Lr(θθθr∗)β < 0 by the chain rule, and therefore ∇2Lm(θθθm∗ ) cannot
be a positive semidefinite matrix, i.e. it has a negative eigenvalue, which completes the proof.

B.5. Combinatorial Analysis

For proving the exact combinatorial results presented in the main (Proposition 4.5 and Lemma 4.6) it will be convenient to
use Newton’s series for finite differences (Milne-Thomson, 2000):
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Definition B.2. Let p be a polynomial of degree d, we define the k-th forward difference of the polynomial p(x) at 0 as

∆k[p](0) =

k∑
i=0

(
k

i

)
(−1)k−ip(i).

Hence, we can write p(x) as

p(x) =

d∑
k=0

(
x

k

)
∆k[p](0). (2)

Rearranging the summands in Equation 2, one observes that Newton’s series for finite differences is a discrete analog of
Taylor’s series

p(x) =

d∑
k=0

∆k[p](0)

k!
[x]k

where (x)k = x(x− 1) . . . (x− k + 1) is the falling factorial.

We now proceed with proving Proposition 4.5 in the main.

Proposition B.10 (Proposition 4.5 in the main). For r ≤ m, we have

G(r,m) =

r∑
i=1

(
r

i

)
(−1)r−iim, (3)

T (r,m) = G(r,m) +

m−r∑
u=1

(
m

u

)
G(r,m− u)g(u). (4)

where g(u) =
∑u
j=1

1
j!G(j, u).

Proof. The proof of the theorem is divided in the two next Propositon. In Proposition B.11 we prove Equation (3), while
in Proposition B.13, using a counting argument (Lemma B.12), we prove Equation (4).

Proposition B.11. For r ≤ m, we have

G(r,m) =

r∑
i=1

(
r

i

)
(−1)r−iim.

Proof. First, recall that, by Proposition B.8, we have that

G(r,m) :=
∑

k1+...+kr=m
ki≥1

(
m

k1, . . . , kr

)
.

The above can be restated by using the identity∑
k1+···+kr=m

ki≥0

(
m

k1, . . . , kr

)
=

r∑
`=0

(
r

`

) ∑
k1+···+kr=m

ki≥0

(
m

k1, . . . , kr

)
1I`(k1, . . . , kr) (5)

where I` := {(0, . . . , 0, k`+1, . . . , kr) : ki ≥ 1 for `+ 1 ≤ i ≤ r}. Equation (5) is equivalent to

rm =

r∑
`=0

(
r

`

)
G(r − `,m) (6)

=

r∑
`=0

(
r

`

)
G(`,m), (7)
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with the convention that G(0,m) = 0. Newton’s series for finite differences (Equation (2)), applied to the polynomial
p(x) = xm at x = r, yields

rm =

r∑
`=0

(
r

`

)∑̀
i=0

(
`

i

)
(−1)`−iim. (8)

Note that the outer summation goes up to r instead of m since the terms with a factor
(
r
k

)
for k ≥ r + 1 are zero. Hence

we have

r∑
`=0

(
r

`

)[∑̀
i=0

(
`

i

)
(−1)`−iim −G(`,m)

]
= 0. (9)

Indeed, with m fixed, the solution

G(`,m) =
∑̀
i=0

(
`

i

)
(−1)`−iim (10)

is the unique solution for the Equation (9) with initial value given by the condition 1m = 1. The uniqueness follows from
an immediate induction argument: since

G(1,m) =
∑
k1=m

(
m

k1

)
= 1 =

1∑
i=0

(
1

i

)
(−1)1−iim,

the initial step of induction is verified. Then, for the induction hypothesis, for k = 1, . . . , r − 1, the first r − 1 term in the
summation in Equation (9) are null, leaving us with the condition

G(r,m) =

r∑
i=0

(
r

i

)
(−1)r−iim.

The Proposition above, which holds for r < m shows that G(r,m) are the forward finite difference at 0 for p(x) = xm,
i.e. G(r,m) = ∆r[p](0). We now comment on the meaning of the formula for r ≥ m. For a given polynomial p(x) define
the rescaled Newton’s finite differences ∆r

h[p](0) as Newton’s finite differences (at 0) for the polynomial p(hx); hence, we
can write the r-th derivative of the polynomial p as the h→ 0 limit of the h-the r-th Newton’s finite difference:

p(r)(0) = lim
h→0+

∆r
h[p](0)

hr
= lim
h→0+

1

hr

r∑
i=0

(
r

i

)
(−1)r−i(hi)m = lim

h→0+

1

hr−m
G(r,m).

Hence for r = m we obtain G(m,m) = m!, whereas for r > m we find G(r,m) = 0.

In order to prove Equation (4), we introduce the following Lemma B.12, which is in fact a counting of the same number in
two ways.

Lemma B.12. For j ≤ n, we have

1

j!
G(j, n) =

∑
c1+2c2+···+ncn=n
c1+c2+···+cn=j

ci≥0

n!

1!c12!c2 · · ·n!cn
1

c1! · · · cn!
.

Proof. By definition, we have

G(j, n) =
∑

b1+...+bj=n
bi≥1

(
n

b1, . . . , bj

)
.
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Starting from a tuple (b1, . . . , bj), consider the tuple (c1, . . . , cn) where ci is the number of occurence of i in (b1, . . . , bj).
Therefore we have (

n

b1, . . . , bj

)
=

(
n

1, . . . , 1︸ ︷︷ ︸
c1

, 2, . . . , 2︸ ︷︷ ︸
c2

, . . . , n︸︷︷︸
cn

)
=

n!

1!c1 · · ·n!cn
. (11)

Moreover, any c-tuple (c1, . . . , cn) appears in (
j

c1, . . . , cn

)
=

j!

c1! · · · cn!
(12)

b-tuples that are exactly (b1, . . . , bj). From Equation (11) and Equation (12) and summing over all tuples (c1, . . . , cn) we
conclude.

We are now in position to prove the closed-form formula for T , Equation (4).

Proposition B.13. For r ≤ m, we have

T (r,m) = G(r,m) +

m−r∑
u=1

(
m

u

)
G(r,m− u)g(u) (13)

where g(u) =
∑u
j=1

1
j!G(j, u).

Proof. Let u = b1 + · · ·+ bj and let ci be, as in Lemma B.12, the number of occurrences of i among (b1, . . . , bj). Recall
that for T we have the identity

T (r,m) :=

m−r∑
j=0

∑
sum(s)=m
ki≥1,bi≥1

(
m

k1, . . . , kr, b1, . . . , bj

)
1

cb
.

We rewrite the outer summation in T from the number of bi’s to the summation of bi’s and we obtain

T (r,m) =

m−r∑
u=0

u∑
j=0

(
m

u

) ∑
k1+···+kr=m−u
b1+···+bj=u
ki≥1,bi≥1

(
m− u

k1, . . . , kr

)(
u

b1, . . . , bj

)
1

c1!c2! · · · cm−r!

where we split the inner summation and the multinomial coefficient into two parts: one that comes from the incoming
weight vectors and the others come from the zero-type neurons (w′1, . . . , w

′
j). Using the formula for G on (k1, . . . , kr), we

simplify as follows

T (r,m) =

m−r∑
u=0

(
m

u

)
G(r,m− u)

u∑
j=0

∑
b1+···+bj=u

bi≥1

(
u

b1, . . . , bj

)
1

c1!c2! · · · cm−r!
.

Finally using Lemma B.12, we find

T (r,m) =

m−r∑
u=0

(
m

u

)
G(r,m− u)

u∑
j=0

1

j!
G(j, u)

where G(0, 0) = 1. Splitting the case u = 0, we derive the closed form formula

T (r,m) = G(r,m) +

m−r∑
u=1

(
m

u

)
G(r,m− u)

u∑
j=1

1

j!
G(j, u).
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Lemma B.14 (Lemma 4.6 in the main). For any k ≥ 0 fixed, we have,

G(m− k,m) ∼ T (m− k,m) ∼ mk

2kk!
m!, as m→∞.

For any fixed r ≥ 0, we have G(r,m) ∼ rm as m→∞.

Proof. We begin to show that

lim
r→∞

1

(r + k)!rk
G(r, r + k) =

1

2kk!
. (14)

In particular, we observe that for k = 1 we have that

G(r, r + 1) =
∑

k1+...+kr=r+1
ki≥1

(
r + 1

k1, . . . , kr

)
=

(
r

1

)(
r + 1

2, 1, . . . , 1

)
= r

(r + 1)!

2!
.

We find that the asymptotic in Equation (14) is in fact an exact equality for any r > 0. For a generic k ≥ 0, we divide the
summation in G according to the number of 1’s in (k1, . . . , kr)

G(r, r + k) =
∑

k1+···+kr=r+k
ki≥1

(
r + k

k1, . . . , kr

)

=

(
r

k

)(
r + k

2, . . . , 2︸ ︷︷ ︸
k

, 1, . . . , 1︸ ︷︷ ︸
r−k

)
+

k−1∑
n=1

(
r

n

) ∑
k1+···+kn=n+k

ki≥2

(
r + k

k1, . . . , kn, 1, . . . , 1︸ ︷︷ ︸
r−n

)
. (15)

For a given tuple (k1, . . . , kn), let c = (c2, . . . , cn), with
∑n
i=2 ci = n and ci is the number of occurrences of i among

(k1, . . . , kn), hence we have (
r + k

k1, . . . , kn, 1, . . . , 1

)
=

(r + k)!

2!c2 · · ·n!cn
.

Since for a given c = (c2, . . . , cn) there are
(

n
c2,...,cn

)
n-tuples (k1, . . . , kn) with such occurrences, we rewrite Equa-

tion (15) as

G(r, r + k) =

(
r

k

)
(r + k)!

2k
+

k−1∑
n=1

(
r

n

) ∑
2c2+···+ncn=n+k
c2+···+cn=n

(
n

c2, . . . , cn

)
(r + k)!

2!c2 · · ·n!cn
.

Dividing both sides by (r + k)!rk, we find

G(r, r + k)

(r + k)!rk
=

1

2kk!

r(r − 1) . . . (r − k + 1)

rk
+

k−1∑
n=1

∑
2c2+···+ncn=n+k
c2+···+cn=n

r(r − 1) . . . (r − n+ 1)

rk
Cc, (16)

where Cc := 1/(c2! · · · cn! · 2!c2 · · ·n!cn). For n ≤ k, we have the following immediate double inequality:

rn−k
(
r − n+ 1

r

)n
≤ r(r − 1) . . . (r − n+ 1)

rk
≤ rn−k.

Together with Equation (16), the above double inequality leads to

1

2kk!

(
r − k + 1

r

)k
+

k−1∑
n=1

∑
2c2+···+ncn=n+k
c2+···+cn=n

rn−k
(
r − n+ 1

r

)n
Cc

≤ 1

(r + k)!rk
G(r, r + k) ≤ 1

2kk!
+

k−1∑
n=1

∑
2c2+···+ncn=n+k
c2+...+cn=n

rn−kCc.
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In the limit r →∞, both the lower and the upper bound converge to 1
2kk!

, hence giving

G(r, r + k) ∼ rk(r + k)!

2kk!
∼ (r + k)k(r + k)!

2kk!
;

finally, by choosing r = m − k, we recover the first asymptotic of the Lemma. In order to prove the asymptotic for
T (m− k,m) we divide both sides in Equation (13) (with r = m− k) by G(m− k,m):

T (m− k,m)

G(m− k,m)
= 1 +

k∑
u=1

(
m

u

)
G(m− k,m− u)

G(m− k,m)
g(u).

The limit of T (m− k,m) as m→∞, is then obtained from the asymptotic of G(m− k,m) above:

1 +

k∑
u=1

(
m

u

)
G(m− k,m− u)

G(m− k,m)
g(u) ∼ 1 +

k∑
u=1

mu

u!
cu
mk−u(m− u)!

mkm!
g(u) ∼ 1 +

k∑
u=1

g(u)

u!

cu
mu
∼ 1

hence, for large m, T (m− k,m) and G(m− k,m) grows at the same rate.

Finally, with an induction argument, we show thatG(r,m) ∼ rm for fixed r andm� r. For r = 1, we haveG(1,m) = 1.
For r = 2, we haveG(2,m) = 2m−2 ∼ 2m. We assume that for all ` = 1, . . . , r−1, we haveG(`,m) ∼ `m. Normalizing
Equation (6) by 1/rm, as m→∞ we have

1 =
1

rm
G(r,m) +

1

rm

r−1∑
`=1

(
r

`

)
G(`,m) ∼ 1

rm
G(r,m) +

r−1∑
`=1

r`

`!

(
`

r

)m
∼ 1

rm
G(r,m).

which completes the induction step, thus the Lemma.

Thanks to the Propositions and Lemmas demonstrated in this section, we are now in position of proving the asymptotic
behaviours presented in Equations (6) and (7) of the main, for mildly and vastly parameterized regimes, respectively. We
assume an overparameterized network of width m = r∗ + n where the minimal width r∗ is large.

Mildly Overparameterized (small h). For fixed k and h, in the limit r∗ → ∞, Lemma B.14 (Lemma 4.6 in the main)
gives the following asymptotic for G(r∗ − k,m) and for T (r∗,m) :

G(r∗ − k,m) ∼ (m)k+h

2k+h(k + h)!
m! ∼ (r∗)k+h

2k+h(k + h)!
m! ,

T (r∗,m) ∼ mh

2hh!
m! ∼ (r∗)h

2hh!
m! .

Taking the ratio of the two quantities above, we find

G(r∗ − k,m)

T (r∗,m)
∼ (r∗)k+h

2k+h(k + h)!

2hh!

(r∗)h
=

(r∗)k

2k(k + h) · · · (h+ 1)
.

Vastly Overparameterized (h� r∗). We consider the case where h is much bigger than r∗.

Using Equation (6) at r = r∗ − 1, we find

r∗−1∑
`=1

(
r∗ − 1

`

)
G(`,m) = (r∗ − 1)m.

We also have that T (r∗,m) ≥ G(r∗,m). Thus if the numbers ak of critical points in a network of width k ∈ [r∗ − 1] are
bounded by

(
r∗−1
r∗−k

)
, we have∑r∗−1

k=1 akG(r∗ − k,m)

T (r∗,m)
≤
∑r∗−1
r=1

(
r∗−1
r

)
G(r,m)

G(r∗,m)
=

(r∗ − 1)m

G(r∗,m)
.
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On the other hand, since r∗ � m, we have that (Lemma B.14 , i.e. Lemma 4.6 in the main)

(r∗ − 1)m

G(r∗,m)
∼
(
r∗ − 1

r∗

)m
as the limit m → ∞. Thus the inequality (7) in the main holds for large m. Although beyond the scope of the paper, it is
worth to point out that a more refined asymptotic analysis for G can be carried on by means of the Nørlund-Rice integral
and saddle point techniques.

B.6. Multi-Layer ANNs

In the case of multi-layers, the equivalence of two incoming weight vectors in the intermediate layers should be understood
in the general sense, i.e. all incoming weight vectors of layer ` are the outgoing weight vectors of layer ` − 1 that can be
written as

{((a11)d, . . . , (a
k1
1 )d)︸ ︷︷ ︸

k1

, . . . , (a1r)d, . . . , (a
kr
r )d︸ ︷︷ ︸

kr

, (α1
1)d, . . . , (α

b1
1 )d︸ ︷︷ ︸

b1

, . . . , (α1
1)d, . . . , (α

bj
r )d︸ ︷︷ ︸

bj

) :

kt∑
i=1

(ait)d = (at)d and
bt∑
i=1

(αit)d = 0}

where d ∈ [r`]. All weight vectors in this set are equivalent in the sense that they produce the same neuron in layer `.

For the general shape of the multi-layer expansion manifold, let us consider first a three-layer network. If we add one
neuron to the first hidden layer, we have that Θ

(1)
rrr→mmm(θθθrrr) is connected. If we do not add a new neuron in the second hidden

layer, the permutations of the neurons in the second hidden layer would bring r2! disconnected components where each
one of the disconnected components have T (r1, r1 + 1) affine subspaces that are connected to each other. Note that in this
case the overall manifold Θrrr→mmm(θθθrrr) is disconnected. However, adding one neuron to the second hidden layer, every r2!
disconnected components get connected through the parameters of the neurons in the second hidden layer, which yields a
connected multi-layer expansion manifold Θrrr→mmm(θθθrrr).

In general, adding n1 neurons to the first hidden layer results in T (r1, r1 + n1) connected affine subspaces instead of
the usual r1! discrete (i.e. disconnected) points. Adding n2 neurons to the second hidden layer brings T (r2, r2 + n2)
affine subspaces instead of the usual r2! points, for each one of the T (r1, r1 + n1) affine subspaces. Note that this is
multiplicative because every combination of the parameters in the first hidden layer can be paired with every combination
of the parameters in the second hidden layer which results in a distinct affine subspace. Similarly, via induction, if n` ≥ 1
for all ` ∈ [L − 1], adding (n1, . . . , nL−1) neurons to each one of the hidden layers make a connected manifold of∏L−1
`=1 T (r1, r1 + n1) affine subspaces.
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