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In this issue of Neuron, Daie et al. (2015) show that the eye velocity-to-position neural integrator not only
encodes the position, but also how it was reached. Representing content and context in the same neuronal
population may form a general coding principle.
Those among us who go to work alterna-

tively by bike or by bus will know the situ-

ation: when in the evening on the way

home the crumbling feeling creeps over

that something doesn’t fit—then you

realize in the bus that you have forgotten

the bike with which you left in the morning

for work. We may console ourselves by

our focused concentration and, after all,

being in the office by itself doesn’t yet

remind us how we got there. But now,

Daie et al. (2015) explain that the same

neuronal population that codes for a posi-

tion also keeps the memory of how this

position was reached. It just needs to be

properly read out and be separated from

the positional information.

The neuronal population that is the

subject of the study is the oculomotor ve-

locity-to-position neural integrator (VPNI)

in the behaving zebrafish larvae, which

also has its homolog in primates (Joshua

and Lisberger, 2014). It is involved in

the horizontal movement of the eyes and

in keeping their position. Anatomically,

the population in the zebrafish consists

of roughly 100 bilaterally distributed

medullary neurons in the inferior retic-

ular formation. These position neurons

receive saccadic, visual, and vestibular

afferents and project to multiple targets

such as the eye oculomotor nuclei, the

cerebellum, and the thalamus. The neu-

rons are shown to integrate (in the sense

of calculus) afferent signals in time

such that ‘‘velocity-encoding’’ presynap-

tic bursts move the ‘‘position-encoding’’

VPNI average firing rate to another level

where it stays without further input

(Aksay et al., 2001). Crucially, the same

average firing rate and hence the same

eye position can be reached in two

different behavioral paradigms: by either

a short spontaneous saccade of roughly

200-ms duration, or by a slow pursuit
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movement tracking an optokinetic stim-

ulus that stops at the target position.

Daie et al. (2015) were recording the

neuronal activities of the VPNI neurons

by two-photon calcium imaging during

and after a saccade or an optokinetic pur-

suit of the eye to the same position. They

found that the spatial distribution of activ-

ity and its persistence differed across the

neurons in the two movement-inducing

paradigms. While a differentiation is ex-

pected due to the unequal driving signals

in the pre-fixation period, this differentia-

tion remained even during the fixation

period where the eye position and the

VPNI average firing rate were the same.

During fixation, the eyes still showed a

small drift, and hence the VPNI is not a

perfect integrator. The average activity

decay was in both paradigms on a scale

of roughly 7 s, and previous work revealed

a spatial gradient of decay times of

the individual neurons across the VPNI

population (Miri et al., 2011). The striking

new finding is that this spatial gradient

is just opposite in the two movement-

inducing paradigms. After a saccade,

more caudally located neurons tended

to bemore persistent than the rostral neu-

rons, and after the optokinetic induction,

the reversed pattern was observed with

more persistent neurons being located

rostrally. This finding suggests that VPNI

encodes the context by the spatial activity

pattern, in addition to representing the

position by the average firing rate.

To understand how a recurrent neural

network can simultaneously encode posi-

tion and context we consider the dy-

namics of the recurrent network formed

by the VPNI. Previous work was suggest-

ing a line attractor network that integrates

inputs and keeps the activity level in the

absence of input with the help of reverber-

ating recurrent input (Seung, 1996; Gold-
evier Inc.
man et al., 2009). Such attractor networks

are described by the activity vector r(t)

that changes due to the neuronal leak,

the recurrent input, and the external input

tneur
dr

dt
= � r +Wr + I; (Equation 1)

with tneur representing the neuronal time

constant, W the recurrent connectivity

matrix, and I(t) a time-dependent velocity

input to the individual neurons. The recur-

rent input in the line attractor model stabi-

lizes all activity patterns r proportional to

a ‘‘mode’’ J, where the mode J is charac-

terized by the relative firing rates of the

neurons in the network. Input that is

co-aligned with this mode changes the

average firing rate, but leaves the spatial

pattern unchanged. The average firing

rate (e.g., position) thus represents the

integrated input (e.g., velocity signal).

Formally, we set the recurrent connec-

tions W = JJT, where mode J has unit

length, i.e., JTJ = 1. Therefore WJ = J,

and each rate vector on the line r = sJ

satisfies � r + Wr = 0. The network then

becomes a pure integrator since solving

Equation 1 for r yields

rðtÞ= 1

tneur

Z
dt0Iðt0Þ: (Equation 2)

More sophisticated neuronal transfer

functions than the linear one in Equation

1 could be considered (Fisher et al.,

2013), but it is remarkable that this simple

model yields a very good description of

recorded neuronal activity.

By requiring that at any time the rate r(t)

is co-aligned with the mode J, we implic-

itly impose this property also on the input,

I f J (see Equation 2). Any component of

the input I orthogonal to mode J would

decay with time constant tneur. But the

experimental paradigm considered by
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Figure 1. A Multi-Modal VPNI for Horizontal Eye Movements in the Zebrafish
(A) The same eye position is encoded in the average population firing rate upon fast saccadic or slow opto-
kinetic velocity input.
(B) The identity of the stimulus (here a saccade) can still be read out in the post-stimulus interval (light
green).
(C) The same VPNI neuron can display different activity decays depending on how the preceding input
pattern decomposes into slow (J1/2) or fast (J3/4) activity modes.
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Daie and colleagues has two types of

input, a saccadic and an optokinetic

input, and their recordings show that

the two different inputs lead to two

different spatial activity patterns that

both show persistent activity. To describe

this behavior, the line attractor must be

extended to a ‘‘plane attractor’’ with a

plane spanned up by two (orthonormal)

modes J1 and J2, and with a saccadic

input Isacc = s1J1 + s2Js and optokinetic

input Iokr = o1J1 + o2Js within that plane.

These different inputs are symbolized in

Figure 1A, bottom, by the blue arrows

representing the shorter, but stronger,

saccadic input that dominates our left

(‘‘caudal’’) VPNI, and by the red arrows

representing the optokinetic input that

dominates the right (‘‘rostral’’) VPNI. The

persistent activity after applying either of

the inputs is represented by the stationary

firing rates of the three VPNI neurons

(Figure 1A, middle, light green). A connec-

tivity matrix forming a plane attractor

is = J1J
T
1 + J2J

T
2 , since for this choice
WJ1 = J1 and also WJ2 = J2. As required

by the behavioral paradigm, the total firing

rate is the same after the saccadic and

optokinetic input, and hence both inputs

lead to the same position (shown in

the ‘‘eye position’’ readout of Figure 1A,

top). But saccadic and optokinetic input

lead to a different spatial activity pattern,

which thus can be said to encode the

context. This stands in contrast to the

line attractor, where the spatial activity

pattern does not encode anything partic-

ular. Therefore it is now also possible to

read out the identity of the afferent ve-

locity signal: another linear combination

of the VPNI activities yields a positive

response if the saccadic input was pre-

sent, and almost no response if the opto-

kinetic input was present (Figure 1B).

Memory retention times in general

must be adapted to the behavioral

scale (Brea et al., 2014), and so does

the zebrafish VPNI leak on a rough

time scale of tslow = 7s. In the model

this can be accounted for by setting
Neuron 85,
W = lslowðJ1JT1 + J2J
T
2 Þ with lslow = 0.99.

This results in a small leak term � r +

Wr = �(1 � lslow)r in Equation 1, and

hence in an effective decay time constant

tslow = tneur/(1 � lslow) of the network that

is 100 times slower than the neuronal time

constant. Since the data reveal different

decay times for the various VPNI neurons,

additional faster (�2 s) decaying modes

J3 and J4 have been extracted (with lfast
z 0.9). The final connection matrix, corre-

spondingly, is the sum of four terms.

When mimicking the saccadic velocity

signal with a brief input Isacc = s1J1 +

s3J3, say of duration tneur, the post-

saccadic activation pattern becomes

rsaccðtÞ= s1J1e
�t=tslow + s3J3e

�t=tfast

(Equation 3)

with some ‘‘singular values’’ s1 and s2 also

extracted from the data. Similarly, the

post-optokinetic activation pattern rokr(t)

is composed of the modes J1, J2, and

J4, and displays also a bi-exponential

decay. An example of the activity decay

for the same neuron during the post-

saccadic and post-optokinetic period is

shown in Figure 1C, together with trajec-

tories of rsacc and rokr restricted to the first

two neurons. In the data, the single-expo-

nential decay times fitted to the individual

neurons in the post-saccadic and post-

optokinetic fixation period show reversed

spatial gradients, similarly to the activity

distribution in Figure 1A (middle).

The eye VPNI of the zebrafish larvae is a

paradigmatic example of a closed sen-

sory-to-motor loop of which we begin to

have a functional understanding. It would

be exciting to build a one-to-one neuronal

model in silico that is based on connec-

tomics data (Ahrens et al., 2012) and

detailed neuron modeling (Fisher et al.,

2013), and that reproduces the known

and new functionalities yet to be discov-

ered. For instance, the described VPNI

neurons that are driven by saccadic input

may activate fast-twitch and non-twitch

motor units in a specific recruitment order

(Mendell, 2005), and the observed over-

shoot of the eye movement may be cor-

rected by a delayed activation of antago-

nistic eye muscles. Yet, the observation

of a simultaneous encoding of position

and input signal that led to this position

may point to a more general population

coding principle. Multiple dimensions of
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a percept or a memory could be encoded

in the same population such as motion or

color, and the dimension that is read out

may change with the task (Mante et al.,

2013). Combining different claims using

Bayesian inference further requires the

representation of each claim together

with its evidence, where the evidence de-

pends on the context (Pouget et al., 2013).

For instance, the evidence we attribute

to the claim ‘‘VPNI is a multi-modal inte-

grator’’ depends on the experiments sup-

porting this claim, and this contextual

information may be jointly encoded with

the claim itself. Daie et al. (2015), with their

publication inNeuron, clearly increase the

evidence that the encoding of content and
666 Neuron 85, February 18, 2015 ª2015 Els
context for horizontal eye movements in

zebrafish is tightly entangled in a small

neuronal population in the brain stem.
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