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Abstract
Can Spiking Neural Networks (SNNs) approximate the dynamics of Recurrent Neural Networks

(RNNs)? Arguments in classical mean-field theory based on laws of large numbers provide a positive

answer when each neuron in the network has many “duplicates”, i.e. other neurons with almost

perfectly correlated inputs. Using a disordered network model that guarantees the absence of

duplicates, we show that duplicate-free SNNs can converge to RNNs, thanks to the concentration

of measure phenomenon. This result reveals a general mechanism underlying the emergence of

rate-based dynamics in large SNNs.

Neurons in the brain interact via spikes – short and stereotyped membrane potential

deflections – commonly modelled as Dirac pulses [1, 2]. SNNs with recurrent connectivity

are simplified models of real networks with the essential biological feature of spike-based

neuronal communication. On the contrary, traditional RNNs are continuous dynamical

systems where abstract rate neurons directly transmit their firing rate to other neurons, a

type of communication which is not biological. Despite their inferior realism, RNNs continue

to play a central role in theoretical neuroscience because they can be trained by modern

machine learning methods [3], they can be analysed using tools from statistical physics [4–7],

and because biological networks are believed to implement computations by approximation of

continuous dynamical systems [8]. Closing the gap between the more biological SNNs and the

more tractable RNNs requires identifying the conditions under which the continuous dynamics

of RNNs can be approximated by SNNs [9]. This problem is important for neuroscience

as it is closely linked to a fundamental question: given the discontinuous and stochastic

nature of spike-based communication [10], how can biological networks produce noise-robust

population dynamics? The question is nontrivial because the microscopic dynamics of SNNs

can be unstable with respect to single-spike perturbations [11, 12].

To clearly state the problem, let us consider an SNN composed of N Poisson neurons (linear-

nonlinear-Poisson neurons [13] or nonlinear Hawkes processes [14]). For each neuron index i,

the spike times {tki }k of neuron i, which define the neuron’s spike train Si(t) =
∑

k δ(t− tki ),

are generated by an inhomogeneous Poisson process with instantaneous firing rate ϕ(hi(t)),

where hi(t) represents the neuron’s potential and ϕ is a positive-valued nonlinear transfer

function. The potential hi(t) is a leaky integrator of the recurrent inputs coming from
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neurons j ̸= i and the external input Iexti (t):

τ
d

dt
hi(t) = −hi(t) +

N∑

j=1

JijSj(t) + Iexti (t), (1)

where τ is the integration (or membrane) time constant and Jij is the synaptic weight from

neuron j to neuron i (by convention, Jii = 0). While the spike-based model described here is

biologically simplistic, it is mathematically convenient as it has a straightforward rate-based

counterpart. If we replace the spike trains {Sj(t)}j in (1) by the corresponding instantaneous

firing rates {ϕ(hj(t))}j (i.e. neurons communicate their firing rate directly), we get the

rate-based dynamics

τ
d

dt
xi(t) = −xi(t) +

N∑

j=1

Jijϕ(xj(t)) + Iexti (t), (2)

which defines an RNN with N rate units. To avoid confusion, we write hi(t) for the potentials

of the SNN (1) and xi(t) for the potentials of the RNN (2). While the mapping from

the SNN to the RNN looks simple at first glance, the spike-based stochastic process (1)

and the rate-based dynamical system (2) describe very different kinds of systems and the

SNN potentials hi(t) are not guaranteed, in general, to be equal or even close to the RNN

potentials xi(t), even if both networks receive the same external input. From a probabilistic

perspective, the RNN (2) also describes the expectation of the stochastic SNN dynamics (1)

over Poisson spike noise, when the two systems share the same initial conditions and the

same external input. This implies that the problem of approximating rate-based dynamics

can be reduced to the problem of controlling the deviation (due to spike noise) of the SNN

potentials hi(t) from their expected trajectories xi(t); in short, approximating rate-based

dynamics is equivalent to producing network dynamics that is robust to spike noise.

If the neurons are uncoupled (i.e. Jij = 0 for all i, j), the SNN potentials hi(t) are trivially

equal to the RNN potentials xi(t). Therefore, comparing the SNN and the RNN is meaningful

only if the coupling does not vanish. For nontrivial coupling, there are two known types of

scaling limits where the SNN potentials hi(t) converge to the RNN potentials xi(t):

(i) Spatial averaging over neuronal duplicates: Consider networks of increasing size N

where neurons are localized in some fixed space such that two neurons assigned to

the same point are duplicates, i.e. they always share the same recurrent and external

input. If the synaptic weights are scaled by 1/N , we can take the mean-field limit
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N → ∞ [15]. The fixed space can be either discrete and finite [16] or continuous and

finite-dimensional [17], e.g. a ring [18]. These classical mean-field limits rely on a

strong form of redundancy: the existence of large ensembles of neuronal duplicates

receiving (almost) the same recurrent and external input.

(ii) Temporal averaging over single-neuron spikes: In (1), we can replace the transfer

function ϕ and the weights {Jij}i ̸=j by b ϕ and {Jij/b}i ̸=j , respectively (for b > 0), and

take the limit b → ∞ [19]. This limit entails arbitrarily high firing rates in the SNN,

which is biologically unrealistic since two spikes have to be separated by at least 1 to

2 milliseconds (the absolute refractory period) [1, 20]. Alternatively, but to a similar

effect, we can take the limit τ → ∞ in both (1) and (2) while re-scaling the weights

{Jij}i ̸=j and the external inputs Iexti (t) by 1/τ . This last limit entails arbitrarily slow

network dynamics, which is incompatible, for example, with human visual processing

speed (less than 150 milliseconds) [21].

In this letter, we address the following question: can large SNNs, as defined in (1), converge

to equally large RNNs in the absence of neuronal duplicates and without temporal averaging?

Temporal averaging as in (ii) is made impossible if we impose, as we do, that

maxϕ ≤ 1/τ. (3)

Under this constraint, leaky integration by the potential (1) is too fast to average out the

Poisson noise of individual input spike trains and neither of the two scalings mentioned under

(ii) can be applied.

To quantify the amount of duplication in an RNN, we look at the distribution of correlations

[22] between pairs of distinct neurons i ̸= j

Cij := lim
T→∞

1

T

∫ T

0

(xi(t)− xi)(xj(t)− xj)

σxi
σxj

dt, (4)

where xi and σ2
xi

are, respectively, the time average and fluctuation of xi(t) (xi :=

limT→∞
1
T

∫ T

0
xi(t)dt and σ2

xi
:= limT→∞

1
T

∫ T

0
(xi(t)− xi)

2dt.

Based on the correlation distribution, we say that duplicates accumulate in large networks

if, as N → ∞, the limit pairwise correlation density has a strictly positive mass around 1.

To illustrate how duplicates accumulate in classical mean-field models, let us consider a toy

example with a ring structure. Let the N units of an RNN be uniformly and independently
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FIG. 1. (A) Limit correlation density for the ring model. The histogram of a simulation with

N = 106 units (solid blue line) is compared to the theoretical limit density (5) (dashed black

line). (B) Limit correlation density (of units receiving recurrent input only) for low-rank networks

p = 2 and p = 4. Simulations of RNNs with N = 106 units (solid blue line) are compared to the

corresponding theoretical limit “Gegenbauer” density (11) (dashed black line). (C) Concentration

around 0 of the correlation distribution in disordered networks with p = αN and fixed load α = 10−4.

The correlation distribution (of units receiving recurrent input only) of simulations of networks of

increasing size N converge to a centred normal density with variance 1/p = 1/(αN) (the dashed

black line indicates the normal density for N = 106). (D) Setup for comparing SNNs and RNNs.

(E) Trajectories of single-neuron potentials in the SNN (hreci (t), upper panel) and in the RNN

(xreci (t), lower panel) during a one-second simulation of the setup shown in (D). The networks have

N = 106 neurons and load α = 10−4, as in (C). The same randomly chosen 11 neurons are recorded

in the SNN and in the RNN and each colour corresponds to a different neuron (the colours in

the upper and lower panels correspond). For one neuron (the black trace), the spike times of the

neuron in the SNN are indicated by vertical bars. (B-E) Neuronal parameters: τ = 10 ms and

ϕ(x) = 1
2τ

(
tanh(x− b) + 1

)
with b = 2; input standard deviation is σ = 0.5 (see (9)).
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positioned on a ring, θi denoting the angular position of unit i. If the correlation between

unit i and j is given by Cij := cos(θi − θj), then, as N → ∞, the limit distribution of the

pairwise correlation, which we call the limit correlation density, is

ρ(z) = 1[−1,1](z)
1

π

1√
1− z2

(5)

(Fig 1A; proof in SM Sec. I [23]). This limit density has a strictly positive mass around 1,

reflecting the fact that each unit has a number of duplicates that grows linearly with N .

Conversely, we say that large networks of a given model are duplicate-free if, for any

threshold ε > 0, the probability that there exists a pair of distinct neurons i ̸= j such that

their absolute correlation is greater or equal to ε tends to 0 as N → ∞, i.e. for all ε > 0,

P
(
∃ (i, j) with i ̸= j s.t. |Cij| ≥ ε

)
−−−→
N→∞

0. (6)

In the following, we propose a disordered network model where large networks are duplicate-

free.

Input-driven disordered network model.— We construct the connectivity matrix J = {Jij}i,j
as a sum of random rank-one matrices (minus self-interaction terms), a construction similar

to that of Hopfield networks [24–26]. For any number of units N and any number of patterns

p, let ξ be a random N × p-matrix with i.i.d., zero-mean, unit-variance, normally distributed

entries {ξiµ}i,µ. We choose a connectivity matrix given by

Jij :=
1

cN

p∑

µ=1

ξiµ
(
ϕ(ξjµ)− a

)
for all i ̸= j, (7)

and Jii := 0 for all i, where a :=
∫∞
−∞ Dz ϕ(z) and c :=

∫∞
−∞Dz (ϕ(z)−a)2 are fixed constants

(Dz denotes the standard Gaussian measure).

A well-known feature of this type of connectivity is that, exchanging the order of summation,

the dynamics of the SNN (1) can be re-written in terms of p overlap variables {mµ(t)}µ
[27–29]: for all i = 1, . . . , N and for all µ = 1, . . . , p,

τ
d

dt
hi(t) = −hi(t) +

p∑

ν=1

ξiνmν(t)− γiSi(t) + Iexti (t),

mµ(t) =
1

cN

N∑

j=1

(
ϕ(ξjµ)− a

)
Sj(t). (8)

where the γi :=
1
cN

∑p
ν=1 ξiν

(
ϕ(ξiν)− a

)
are virtual self-interaction weights. An analogous

reformulation holds for the RNN (2). In the language of latent variable models in neuroscience,
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the overlap variables mµ(t) would be called “factors” [30]. The reformulation in terms of

overlaps/factors clearly shows that if p ≪ N , the γi are small and therefore the recurrent

drive {∑N
j=1 JijSj(t)}i is approximately restricted to the p-dimensional subspace spanned by

the p columns of the random matrix ξ. To force the recurrent drive to visit all p dimensions

homogeneously over time in a single stationary and ergodic process, we inject the following

p-dimensional external input to half of the neurons:

Iexti (t) =
σ√
p

p∑

µ=1

ξiµηµ(t) if i ≤ N/2, (9)

where the η1(t), . . . , ηp(t) are the formal derivatives of independent Wiener processes (or

standard Brownian motions) B1(t), . . . , Bp(t), i.e. ηµ(t) = dBµ(t)/dt, and σ > 0 is the

standard deviation of the input. For clarity, we use the superscript ‘in’ to emphasize that,

for all i ≤ N/2, the neurons hin
i (t) and the units xin

i (t) receive external as well as recurrent

inputs, and we use the superscript ‘rec’ to emphasize that, for all i > N/2, the neurons hrec
i (t)

and the units xrec
i (t) receive recurrent input only. Note that the xrec

i (t) can be seen as linear

readouts of the recurrent drive.

Assuming that for any N and p the input (9) leads to a stationary ergodic process, we

find, for any N and p, that the correlation between two units satisfies the bound

Cij ≤
∑p

µ=1 ξiµξjµ√∑p
µ=1 ξ

2
iµ

√∑p
µ=1 ξ

2
jµ

, (10)

because of the radial symmetry of the joint stationary distribution of the variables {mµ}pµ=1.

The bound (10) is tight, if the virtual self-interaction weights γi = 0, that is, if Jii =

1
cN

∑p
µ=1 ξiµ

(
ϕ(ξiµ)− a

)
. The bound (10) also holds for the pairwise correlations in the

SNN (1) since the addition of spike noise can only reduce correlations. Henceforth, we write

Crec
ij for the pairwise correlation (4) between the ‘rec’ units xi and xj.

If the number of patterns p is kept constant as N → ∞, the limit RNN is a low-rank

mean-field model (without disorder) [6, 31]. In such low-rank models, the bound (10) is

asymptotically tight for the Crec
ij , since the virtual self-interaction weights γi → 0 as N → ∞.

However, duplicates accumulate as N → ∞ because the distribution of correlations {Crec
ij }i<j

converges to a limit density with a strictly positive mass around 1, indicating that the number

of duplicates per unit grows linearly with N . More specifically, for any fixed p > 1, the limit
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density is given by the so-called “Gegenbauer distribution” with parameter p,

ρ(z) = 1[−1,1](z)
Γ(p/2)√

π Γ((p− 1)/2)
(1− z2)

p−3
2 , (11)

which is the orthogonal projection of the uniform distribution on the unit sphere Sp−1 onto its

diameter (Fig 1B; proof in SM Sec. I [23]). Intuitively, the explanation for the accumulation

of duplicates is the same as in the ring model presented above, except that, here, the fixed

space is not a ring but Rp: unit i has coordinate ξi = (ξi1, . . . , ξip) and units with similar

coordinates receive similar recurrent and external inputs. Therefore, if p is kept fixed as

N → ∞, we fall again in the case of spatial averaging over neuronal duplicates (i) leading to

neural field equations (see SM Sec. II [32]).

To prevent duplicates from accumulating as N → ∞, we make the number of patterns p

grow linearly with N , taking p = αN for some fixed load α > 0, as in the Hopfield model

[25]. With this choice of scaling, weights {Jij}i,j scale as O(1/
√
N) (as in random RNNs

[5, 33–35]), whence the name “disordered network” for this model. First (I), we will show

that for any fixed α > 0, large networks are duplicate-free (as defined above). Second (II),

we will show that large SNNs converge to large RNNs, with convergence rate
√
α, as α → 0

(this means that for arbitrarily small α > 0, large SNNs behave almost exactly like large

RNNs). To compare the SNN (1) with the RNN (2), we will inject the same time-dependent

external input (9) in both networks (Fig 1D) and compare the trajectories hrec
i (t) of the SNN

with the trajectories xrec
i (t) of the RNN (Fig 1E).

(I) Large networks are duplicate-free.— Assuming that the bound (10) is tight for Crec
ij ,

for any distinct pair of units i ̸= j, we have, by the central limit theorem, that the scaled

correlation √
pCrec

ij converges in law to a standard normal random variable as p → ∞. Then,

if p → ∞ as N → ∞, we can prove that the distribution of correlations {Crec
ij }i<j converges

to a centered normal distribution with variance 1/p as N → ∞ (Fig. 1C; proof in SM Sec. I

[23]). More importantly, using the bound (10) and the fact that we have for all N, p > 1 a

Gegenbauer distribution with parameter p (11), we can derive a bound for the probability of

a duplicate:

P
(
∃ (i, j) with i ̸= j s.t. |Cij| ≥ ε

)
≤ N(N − 1)

2

(1− ε2)
p−1
2√

π
, (12)

for all 0 < ε < 1 (see SM Sec. III [36]). Since we have p = αN , the bound tends to 0 as

N → ∞, which confirms that large networks are duplicate-free. In fact, the bound guarantees
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FIG. 2. Large N simulations of the distance ∆rec
N (α) as a function of α for p = 100 (rectangles),

p = 200 (stars), and p = 400 (diamonds). Simulations of ∆rec
N (α) for the duplicate-free sequence of

networks p = N1/3 (full circles). Theoretical O(
√
α) bound predicated by the feedforward model

simplification (dashed line). Same parameters as in Fig. 1B-E.

that the sublinear scaling p = αNβ with 0 < β < 1 suffices to get duplicate-free networks as

N → ∞.

(II) Large SNNs converge to large RNNs at rate
√
α, as α → 0.— For any fixed load α,

we define the average distance between the SNN and the RNN as

∆rec
N (α) :=

2

N

N∑

i=N/2+1

lim
T→∞

1

T

∫ T

0

∣∣hrec
i (t)− xrec

i (t)
∣∣ dt

and the large N limit distance as ∆rec(α) := limN→∞∆rec
N (α). Numerical estimates of the

limit distance ∆rec(α) as a function of α indicates that

∆rec(α) = O(
√
α), as α → 0 (13)

(Fig. 2). This scaling implies that large SNNs can converge to equally large RNNs despite

the fact that (i) there is no duplicate averaging (Fig. 1C and (12)) and (ii) no temporal

averaging (3). For example, if we take the sublinear scaling p = N1/3, which implies

α = N−2/3, the distance ∆rec
N (α) → 0 vanishes (Fig. 2, full circles) and networks are

duplicate-free (12), as N → ∞.

In the absence of averaging of types (i) and (ii), the concentration of measure phenomenon

[37, 38] can explain the convergence of SNNs to RNNs. In our case, the concentration of

measure is controlled by the ℓ2 norm ∥Ji∥2 =
√∑N

j=1 J
2
ij of each neuron i’s incoming weights.

9



↦

hrec(t)hin(t) h(2)(t)h(1)(t)

FIG. 3. The feedforward model as a simplification of the input-driven model. Dotted lines indicate

removed connections

When p = αN , for a typical neuron i, we find the convergence in probability

∥Ji∥2 P−−−→
N→∞

√
α

c
, (14)

(proof in SM Sec. IV [39]) which means that the ℓ2 norms of each neuron’s incoming weights

concentrate around
√
α/c (where c is defined after (7)). The numerical scaling (13) of

the limit distance between large SNNs and large RNNs, as α → 0, corresponds to the

theory-based scaling (14) of the limit ℓ2 norm of a typical neuron’s incoming weights.

Although we do not have an exact theory linking the limit ℓ2 norm (14) with the limit

distance ∆rec(α) (13), a simplified feedforward model, which is analytically tractable, offers a

good intuition for the concentration of measure phenomenon at play. This simplified model is

obtained by keeping network connections from ‘in’ to ‘rec’ neurons and removing all the other

connections (Fig. 3). After this pruning procedure, we are left with two-layer feedforward

networks where the ‘in’ neurons make up the first layer, (hin
i (t), x

in
i (t)) 7→ (h

(1)
i (t), x

(1)
i (t)), and

the ‘rec’ neurons make up the second layer, (hrec
i (t), xrec

i (t)) 7→ (h
(2)
i (t), x

(2)
i (t)). In general,

for any N > 1 and for any connectivity matrix J, we find that, for any neuron i in the second

layer, the single-neuron distance satisfies the bound

lim
T→∞

1

T

∫ T

0

∣∣∣h(2)
i (t)− x

(2)
i (t)

∣∣∣ dt ≤
√

maxϕ

2τ
∥Ji∥2,

(proof in SM Sec. V [40]) which is indeed controlled by the ℓ2 norm ∥Ji∥2. Then, if p = αN ,

using the convergence of the ℓ2 norm (14), we get the expected scaling for the limit distance,

as N → ∞, between a spiking neuron h
(2)
i and a rate unit x

(2)
i :

lim
T→∞

1

T

∫ T

0

∣∣∣h(2)
i (t)− x

(2)
i (t)

∣∣∣ dt ≤
√

maxϕ

2τc

√
α
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(cf. Fig. 2). Therefore, the feedforward model provides an intuition for how the vanishing ℓ2

norms of the incoming weights (as α → 0) cause concentration of measure in duplicate-free,

large SNNs. An exact theory of the original recurrent networks would require a full-fledged

dynamical mean-field theory [41] for our input-driven disordered network model, which

remains an open problem.

Concentration of measure [38] has been shown to be instrumental for the theory of spin

glasses [42] and the theory of infinite-width artificial neural networks [43]. By contrast, this

probabilistic notion has barely permeated the theory of biological neural networks. The

standard perspective has been that, to produce spike-noise-robust population dynamics,

large networks have to perform averages over the spike activity of many neuronal duplicates

[2, 9, 29, 44], i.e. mechanism (i). Recently, DePasquale et al. [30] proposed after extensive

numerical simulations the perspective that “weighted averages” over heterogeneous neurons

could lead to population-level latent factors with noise-robust dynamics, which can then

produce the illusion of rate-based dynamics. We provide a theoretical foundation for this

idea by showing that the concentration of measure phenomenon explains how the dynamics

of large, duplicate-free SNNs can converge to the dynamics of equally large RNNs. Note

that, while we have focused our analysis on networks of linear-nonlinear-Poisson neurons,

analogous results still hold, for example, when diffusive membrane noise is added to the

potential dynamics (see SM Sec. VI [45]). In the absence of neuronal duplicates, rate-based

population dynamics in networks of spiking neurons can only be understood as an emergent

behaviour: neurons interact via spikes, but they behave as if they were interacting via their

unique, time-varying firing rates. This notion of emergent rate-based dynamics sheds new

light on the long-standing spike vs. rate debate in computational neuroscience [2, 9, 44].
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I. LIMIT CORRELATION DENSITY

We prove two theorems characterizing the limit distribution of pairwise correlations

between distinct neurons {Cij}i ̸=j, as N → ∞, assuming that the correlation Cij between a

pair of distinct neurons i ̸= j is given by

Cij =
1

p

p∑

µ=1

ξ̃iµξ̃jµ, (S1)

where ξ̃iµ := ξiµ/
√

1
p

∑p
µ=1 ξ

2
iµ and the {ξiµ}1≤i≤N,1≤µ≤p are i.i.d. are zero-mean, unit-variance

normal random variables. More explicitly, we prove the convergence of the random empirical

measure

ρN(dz) :=
2

N(N − 1)

∑

1≤i<j≤N

δ 1
p

∑p
µ=1 ξ̃iµξ̃jµ

(dz), (S2)

to a deterministic probability measure as N → ∞. In (S2), δ 1
p

∑p
µ=1 ξ̃iµξ̃jµ

(dz) denotes the

Dirac measure centered on the point 1
p

∑p
µ=1 ξ̃iµξ̃jµ.

Let us recall a general mathematical framework for studying the convergence of random

empirical measures.

Definition 1. Let P(R) denote the space of probability measures on R endowed with the

topology of weak convergence. We say that a sequence of random probability measures {ρN}∞N=1

in P(R) converges in probability to a deterministic probability measure ρ ∈ P(R) if, for all

continuous and bounded functional F : P(R) → R,

E[F (ρN)] → E[F (ρ)], as N → ∞.

In the field the interacting particle systems, It is well known that to show the convergence

defined as in Definition 1, it suffices to show that for all continuous and bounded functions

f : R → R,

E

[∣∣∣∣
∫

f(z)ρN(dz)−
∫

f(z)ρ(dz)

∣∣∣∣

]
→ 0, as N → ∞;

see for example [1, Proposition 4.2]. (The functions f are usually called “test functions”.)

We distinguish two cases: first, the case where p ∈ N+ is fixed as N → ∞ (Theorem 1);

second , the case where p = αN , for α > 0, as N → ∞ (Theorem 2). To prove both theorems,

we will use the following lemma which does not depend on the scaling of p as N → ∞.

3



Lemma 1. For any N > 1 and p > 0, let {ζi,µ}1≤i≤N,1≤µ≤p be a collection of i.i.d. random

variables. For all bounded functions f : R → R,

Var


 2

N(N − 1)

∑

1≤i<j≤N

f


1

p

p∑

µ=1

ζiµζjµ





 ≤ 2(2N − 3)

N(N − 1)
∥f∥2∞ (S3)

In particular, the variance bound (S3) does not depend on p and it vanishes as N → ∞.

Proof. We use the shorthand f(i, j) := f
(

1
p

∑p
µ=1 ζiµζjµ

)
.

Var


 2

N(N − 1)

∑

1≤i<j≤N

f(i, j)




=
4

N2(N − 1)2




E





 ∑

1≤i<j≤N

f(i, j)




2

−


E


 ∑

1≤i<j≤N

f(i, j)







2




=
4

N2(N − 1)2

∑

1≤i<j≤N

∑

1≤k<l≤N

E[f(i, j)f(k, l)]− E[f(i, j)]E[f(k, l)]. (S4)

If {i, j}∩{k, l} = ∅, f(i, j) and f(k, l) are independent and E[f(i, j)f(k, l)]−E[f(i, j)]E[f(k, l)] =

0. If {i, j}∩{k, l} ≠ ∅, E[f(i, j)f(k, l)]−E[f(i, j)]E[f(k, l)] can be upper-bounded by ∥f∥2∞.

Since, in the double sum (S4), {i, j} ∩ {k, l} = ∅ for N(N − 1)/2× (N − 2)(N − 3)/2 of the

summands, we know that {i, j} ∩ {k, l} ≠ ∅ for

N(N − 1)

2

N(N − 1)

2
− N(N − 1)

2

(N − 2)(N − 3)

2
=

N(N − 1)

2
(2N − 3)

of the summands. Hence, we get that

4

N2(N − 1)2

∑

1≤i<j≤N

∑

1≤k<l≤N

E[f(i, j)f(k, l)]− E[f(i, j)]E[f(k, l)]

≤ 4

N2(N − 1)2
N(N − 1)

2
(2N − 3)∥f∥2∞ =

2(2N − 3)

N(N − 1)
∥f∥2∞.

Theorem 1. For any fixed p > 1, the sequence of empirical measures

ρN(dz) :=
2

N(N − 1)

∑

1≤i<j≤N

δ 1
p

∑p
µ=1 ξ̃iµξ̃jµ

(dz) ∀N > 1,

converges in probability (according to Definition 1), as N → ∞, to the deterministic probability

measure ρ ∈ P(R) given by

ρ(dz) := 1[−1,1](z)
Γ(p/2)√

π Γ((p− 1)/2)
(1− z2)

p−3
2 dz.
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Proof. As mentioned above, to show the convergence of ρN to ρ in probability, it suffices to

show that for all continuous and bounded functions f : R → R,

E

[∣∣∣∣
∫

f(z)ρN(dz)−
∫

f(z)ρ(dz)

∣∣∣∣

]
→ 0, as N → ∞.

By Jensen’s inequality [2, Theorem 5.1 p. 132] and Lemma 1,

E



∣∣∣∣∣

∫
f(z)ρN(dz)− E

[∫
f(z)ρN(dz)

]∣∣∣∣∣


 ≤

[
Var

(∫
f(z)ρN(dz)

)]1/2
−−−→
N→∞

0.

Hence, it only remains to show that, for all N > 1,

E
[∫

f(z)ρN(dz)

]
=

∫
f(z)ρ(dz) =

∫
f(z)

Γ(p/2)√
π Γ((p− 1)/2)

(1− z2)
p−3
2 dz. (S5)

Indeed, we have

E
[∫

f(z)ρN(dz)

]
= E


 2

N(N − 1)

∑

1≤i<j≤N

f


1

p

p∑

µ=1

ξ̃iµξ̃jµ





 = E


f


1

p

p∑

µ=1

ξ̃1µξ̃2µ







= E


E


f


1

p

p∑

µ=1

ξ̃1µξ̃2µ



∣∣∣∣∣ ξ̃1,1, . . . , ξ̃1,p





 . (S6)

By definition, the random vector 1√
p
(ξ̃1,1, . . . , ξ̃1,p)

T lies on the (p − 1)-sphere of unit ra-

dius, Sp−1, and, by symmetry, the conditional expectation in (S6) is constant for all
1√
p
(ξ̃1,1, . . . , ξ̃1,p)

T ∈ Sp−1. Since the vector 1√
p
(ξ̃2,1, . . . , ξ̃2,p)

T is uniformly distributed on

Sp−1, we have, by the Funk-Hecke formula (see [3, Theorem 1.2.9] for a reference),

E


E


f


1

p

p∑

µ=1

ξ̃1µξ̃2µ



∣∣∣∣∣ ξ̃1,1, . . . , ξ̃1,p





 =

∫ 1

−1

f(z)
Γ(p/2)√

π Γ((p− 1)/2)
(1− z2)

p−3
2 dz,

which concludes the proof of (S5).

Corollary 1. If θ1, . . . , θN are i.i.d. and uniformly distributed on the interval [0, 2π[, the

sequence of empirical measures

ρN(dz) :=
2

N(N − 1)

∑

1≤i<j≤N

δcos(θi−θj)(dz)

5



converges in probability (according to Definition 1), as N → ∞, to the deterministic probability

measure ρ ∈ P(R) given by

ρ(dz) := 1[−1,1](z)
1

π

1√
1− z2

dz.

Proof. Notice that the collection of random variables {cos(θi − θj)}i<j has the same joint

law as {1
2
(ξ̃i,1ξ̃j,1 + ξ̃i,2ξ̃j,2)}i<j. Thus, the result follows from the Theorem 1 with p = 2.

Theorem 2. If p = αN for some fixed α > 0, the sequence of empirical measures

ρ̂N(dz) :=
2

N(N − 1)

∑

1≤i<j≤N

δ 1√
p

∑p
µ=1 ξ̃iµξ̃jµ

(dz) ∀N > 1,

converge in probability (according to Definition 1), as N → ∞, to the deterministic probability

measure ρ ∈ P(R) given by

ρ(dz) :=
1√
2π

e−z2/2dz.

Proof. As in the proof of Theorem 1, to show that the convergence in probability of ρN to ρ,

it suffices to show that for all continuous and bounded function f : R → R,

E

[∣∣∣∣
∫

f(z)ρ̂N(dz)−
∫

f(z)ρ(dz)

∣∣∣∣

]
→ 0, as N → ∞.

By triangular inequality,

E

[∣∣∣∣
∫

f(z)ρ̂N(dz)−
∫

f(z)ρ(dz)

∣∣∣∣

]

≤ E



∣∣∣∣∣

∫
f(z)ρ̂N(dz)− E

[∫
f(z)ρ̂N(dz)

]∣∣∣∣∣


+

∣∣∣∣∣E
[∫

f(z)ρ̂N(dz)

]
−
∫

f(z)ρ(dz)

∣∣∣∣∣ . (S7)

By Jensen’s inequality and Lemma 1, we know the first term on the right-hand side of (S7)

vanishes as N → ∞ and it only remains to show that

E
[∫

f(z)ρ̂N(dz)

]
→
∫

f(z)ρ(dz), as N → ∞. (S8)

Since

E
[∫

f(z)ρ̂N(dz)

]
= E


f


 1√

p

p∑

µ=1

ξ̃1µξ̃2µ





 ,

6



showing (S8) is equivalent to showing

E


f


 1√

p

p∑

µ=1

ξ̃1µξ̃2µ





→

∫
f(z)ρ(dz), as N → ∞,

which in turn is equivalent to showing that the random variables X̃N := 1√
p

∑p
µ=1 ξ̃1µξ̃2µ

converge in law to a standard normal variable X ∼ N (0, 1) as N → ∞. We recall that

p = αN . As N → ∞, we have, on the one hand, that
√

1
p

∑p
µ=1 ξ

2
iµ converges in probability

to 1 by the weak law of large numbers and the continuous mapping theorem [2, Theorem 10.3

p. 245], and on the other hand, XN := 1√
p

∑p
µ=1 ξ1µξ2µ converges in law to X by the central

limit theorem. Hence, X̃N converges in law to X by Slutsky’s theorem [2, Theorem 11.4

p. 249]. This proves (S8) and concludes the proof.
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II. FROM LOW-RANK SNNS TO NEURAL FIELD EQUATIONS

For any number of neurons N and any number of patterns p, let ξ be a random N × p-

matrix with i.i.d., zero-mean, unit-variance, normally distributed entries {ξiµ}i,µ. We choose

a connectivity matrix given by

Jij :=
1

cN

p∑

µ=1

ξiµ
(
ϕ(ξjµ)− a

)
for all i ̸= j,

and Jii := 0 for all i. As in the main text, a :=
∫∞
−∞Dz ϕ(z) and c :=

∫∞
−∞Dz (ϕ(z)− a)2,

where Dz is the standard Gaussian measure Dz = dz. This type of connectivity matrix was

introduced by Brunel and Pereira [4] in the context of Hopfield networks.

When the number of patterns p is kept constant as the number of neurons N tends to

infinity, we say that the connectivity matrix J = {Jij}1≤i≤N
1≤j≤N

is low-rank since its rank remains

finite as N → ∞. Although large, random, low-rank networks of neurons [5, 6] are usually

not presented as spatially structured networks, they do have an implicit spatial structure.

By identifying this spatial structure, we can derive exact neural field equations describing

the dynamics of large networks, as we show here for the connectivity matrix J.

For simplicity, let us first consider an SNN of N neurons without external input. The

N neurons are assigned to N points in Rp corresponding to the rows of ξ, i.e., neuron i is

assigned to the point ξi = (ξi1, . . . , ξip). Writing u(t, ξi) = hi(t) for all i = 1, . . . , N , we can

interpret u(t, ξi) as being the potential of a neuron at location ξi ∈ Rp at time t. Without

loss of generality, let us consider the dynamics of neuron i = 1, which can be rewritten

τ
d

dt
u(t, ξ1) = −u(t, ξ1) +

N∑

j=2

1

cN

p∑

µ=1

ξ1µ
(
ϕ(ξjµ)− a

)

︸ ︷︷ ︸
=J1j

sj(t),

= −u(t, ξ1) +
1

c

p∑

µ=1

ξ1µ
1

N

N∑

j=2

(
ϕ(ξjµ)− a

)
sj(t),

9



where sj(t) has instantaneous firing rate ϕ(u(t, ξj)). By spatial averaging [7, 8], we have

lim
N→∞

1

N

N∑

j=2

(
ϕ(ξjµ)− a

)
sj(t) = lim

N→∞

1

N

N∑

j=2

(
ϕ(ξjµ)− a

)
ϕ(u(t, ξj))

=

∫

Rp

lim
N→∞

1

N

N∑

j=2

δξj(dz)

︸ ︷︷ ︸
=Dz

(
ϕ(zµ)− a

)
ϕ(u(t, z))

=

∫

Rp

Dz
(
ϕ(zµ)− a

)
ϕ(u(t, z)), (S9)

where δξj(dz) denotes the Dirac measure centered on the point ξj and Dz denotes the

p-dimensional standard Gaussian measure

Dz = dz1 . . . dzp
1

(2π)p/2
e−∥z∥22 .

Intuitively, the equalities (S9) simply reflect the fact that as N → ∞, the empirical measure
1
N

∑N
i=1 δξi on Rp, which summarizes the locations ξ1, ξ2, . . . , ξN of neurons in Rp, converges

to the standard Gaussian measure Dz on Rp (since the p-dimensional random vectors

ξ1, ξ2, . . . , ξN are i.i.d. with distribution Dz), turning the summation over neurons into an

integration over a Gaussian measure. Therefore, since the spatial distribution of neurons in

Rp converges to a continuous Gaussian distribution as N → ∞, we find that the continuous

field u(t,y), with y ∈ Rp, solves the integro-differential equation

τ
∂

∂t
u(t,y) = −u(t,y) +

1

c

p∑

µ=1

yµ

∫

Rp

Dz
(
ϕ(zµ)− a

)
ϕ(u(t, z)), ∀y ∈ Rp.

Defining the connectivity kernel w : Rp → Rp

w(y, z) :=
1

c

p∑

µ=1

yµ
(
ϕ(zµ)− a

)
, (S10)

we get a neural field equation (see [9] and Eq. 6.129 in [10, p. 244]):

τ
∂

∂t
u(t,y) = −u(t,y) +

∫

Rp

Dzw(y, z)ϕ(u(t, z)), ∀y ∈ Rp. (S11)

While the arguments presented here are informal, the neural field equation is the exact

mean-field limit of the low-rank SNN: using the embedding of the low-rank SNN in Rp, the

convergence of the SNN to the neural field equation (S11) is guaranteed by rigorous results

for spatially structured SNNs [11].

10



Of course, by the same arguments, the corresponding low-rank RNN also converges to the

neural field equation (S11).

In the case where half of the neurons receive an external input σ√
p

∑p
µ=1 ξiµηµ(t), as defined

in the main text, we can describe the population dynamics with two neural field equations.

Following the same steps as above, we get that for each neuron i receiving external input,

limN→∞ hin
i (t) = limN→∞ xin

i (t) = uin(t, ξi), and for all neuron i′ receiving no external input

but only recurrent input, limN→∞ hrec
i′ (t) = limN→∞ xrec

i′ (t) = urec(t, ξi′), where the fields uin

and urec are the solutions to the system

τ
∂

∂t
uin(t,y) = −uin(t,y) +

1

2

∫

Rp

Dzw(y, z)ϕ(uin(t, z))

+
1

2

∫

Rp

Dzw(y, z)ϕ(urec(t, z)) +
σ√
p

p∑

µ=1

yµηµ(t), ∀y ∈ Rp,

τ
∂

∂t
urec(t,y) = −uin(t,y) +

1

2

∫

Rp

Dzw(y, z)ϕ(uin(t, z))

+
1

2

∫

Rp

Dzw(y, z)ϕ(urec(t, z)), ∀y ∈ Rp,

where the {ηµ(t)}pµ=1 are the formal derivatives of independent Wiener processes (or standard

Brownian motions) B1(t), . . . , Bp(t), i.e. ηµ(t) = dBµ(t)/dt.
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III. BOUND ON THE PROBABILITY OF A DUPLICATE

Let us assume that the correlations {Cij}1≤i,j≤N are given by (S1).

Lemma 2. For any N, p > 1 and for any 0 < ε < 1, we have the bound

P(∃ i ̸= j such that |Cij| ≥ ε) ≤ N(N − 1)

2

(1− ε2)
p−1
2√

π
.

Proof. By union bound, we have

P(∃ i ̸= j such that |Cij| ≥ ε) ≤ N(N − 1)

2
P(|C12| ≥ ε).

Then, we use the fact that C12 follows a Gegenbauer distribution with parameter p, whence

P(|C12| ≥ ε) = 2

∫ 1

ε

Γ(p/2)√
π Γ((p− 1)/2)

(1− z2)
p−3
2 dz.

First, we notice that
Γ(p/2)

Γ((p− 1)/2)
≤ Γ((p+ 1)/2)

Γ((p− 1)/2)
=

p− 1

2
;

second, using the change of variable y2 = 1− z2,

∫ 1

ε

(1− z2)
p−3
2 dz =

∫ √
1−ε2

0

[
y2
] p−3

2
y√

1− y2
dy ≤

∫ √
1−ε2

0

yp−2dy =
(1− ε2)

p−1
2

p− 1
.

Hence, we have shown that

P(|C12| ≥ ε) ≤ (1− ε2)
p−1
2√

π
,

which concludes the proof.
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IV. CONCENTRATION OF THE ℓ2 NORMS OF THE INCOMING WEIGHTS

We recall that the ℓ2 norm of the incoming weights to neuron i is ∥Ji∥2 =
√∑N

j=1 J
2
ij

and that the weights are given by Jij :=
1
cN

∑p
µ=1 ξiµ

(
ϕ(ξjµ)− a

)
, for all i ̸= j, and Jii := 0,

where a =
∫∞
−∞Dz ϕ(z) and c =

∫∞
−∞ Dz (ϕ(z)− a)2 are constants (Dz denotes the standard

Gaussian measure).

Theorem 3. When p = αN for some fixed α > 0, the ℓ2 norm of the incoming weights of a

typical neuron i converges in probability to
√
α/c as N → ∞, i.e.

∥Ji∥2 P−−−→
N→∞

√
α

c
.

Proof. Without loss of generality, we can take i = 1. The proof can be decomposed in two

steps. First (Step 1), we will show that

lim
N→∞

E
[
∥J1∥22

]
=

α

c
, (S12)

then (Step 2), we will show that

Var
(
∥J1∥22

)
=

2α(1 + α)

c2N
+O

(
1

N2

)
. (S13)

If (S12) and (S13) are verified, ∥J1∥22 converges in probability to α/c and, by the continuous

mapping theorem, ∥J1∥2 converges in probability to
√
α/c.

Step 1:

E
[
∥J1∥22

]
= E




N∑

j=1

J2
1j


 =

N∑

j=1

E
[
J2
1j

]
=

1

c2N2

N∑

j=2

E







p∑

µ=1

ξ1µ
(
ϕ(ξjµ)− a

)



2



(∗)
=

1

c2N2

N∑

j=2

E




p∑

µ=1

ξ21µ
(
ϕ(ξjµ)− a

)2

 =

1

c2N2

N∑

j=2

p∑

µ=1

E
[
ξ21µ
(
ϕ(ξjµ)− a

)2]

=
1

c2N2
(N − 1)αNc −−−→

N→∞

α

c

For the equality (∗), we used the fact that the cross terms are null since the columns of the

random matrix ξ, i.e. the patterns, are independent and when µ ̸= ν,

E
[
ξ1µ
(
ϕ(ξjµ)− a

)
ξ1ν
(
ϕ(ξjν)− a

)]
= E

[
ξ1µ
(
ϕ(ξjµ)− a

)]
Eξ

[
ξ1ν
(
ϕ(ξjν)− a

)]
= 0.
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Step 2:

Var
(
∥J1∥22

)
= Var




N∑

j=1

J2
1j


 = E







N∑

j=1

J2
1j




2

− E




N∑

j=1

J2
1j



2

. (S14)

By the computation in Step 1 above, we have

E




N∑

j=1

J2
1j



2

=
1

c2
(N − 1)2p2

N4
. (S15)

The second moment can be decomposed as

E







N∑

j=1

J2
1j




2

 = E




N∑

j=1

J4
1j +

N∑

j=1

∑

k ̸=j

J2
1jJ

2
1k




= (N − 1)E
[
J4
12

]
+ (N − 1)(N − 2)E

[
J2
12J

2
13

]
, (S16)

and we compute the terms E
[
J4
12

]
and E

[
J2
12J

2
13

]
separately.

E
[
J4
12

]
=

1

c4N4
E







p∑

µ=1

ξ1µ
(
ϕ(ξ2µ)− a

)



4



=
1

c4N4

p∑

µ=1

E
[
ξ41µ
(
ϕ(ξ2µ)− a

)4]

+
1

c4N4

∑

1≤µ<ν≤p

(
4

2

)
E
[
ξ21µ
(
ϕ(ξ2µ)− a

)2
ξ21ν
(
ϕ(ξ2ν)− a

)2]

where for the second equality, we used the fact that, in the multinomial expansion of

E







p∑

µ=1

ξ1µ
(
ϕ(ξ2µ)− a

)



4

 ,

all terms with at least one odd power are null. Hence, we get that

E
[
J4
12

]
= O

(
1

N3

)
+

1

c4N4

p(p− 1)

2
6c2 =

3

c2N4
p(p− 1) +O

(
1

N3

)
. (S17)
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Similarly,

E
[
J2
12J

2
13

]
=

1

c4N4
E







p∑

µ=1

ξ1µ
(
ϕ(ξ2µ)− a

)



2


p∑

µ=1

ξ1µ
(
ϕ(ξ3µ)− a

)



2



=
1

c4N4

p∑

µ=1

E
[
ξ41µ
(
ϕ(ξ2µ)− a

)2 (
ϕ(ξ3µ)− a

)2]

+
2

c4N4

∑

1≤µ<ν≤p

E
[
ξ21µ
(
ϕ(ξ2µ)− a

)2
ξ21ν
(
ϕ(ξ3ν)− a

)2]

=
3

c2N4
p+

1

c2N4
p(p− 1). (S18)

From Eqs. (S14), (S15), (S16), (S17) and (S18), we get

Var
(
∥J1∥22

)
= E







N∑

j=1

J2
ij




2

− E




N∑

j=1

J2
ij



2

= (N − 1)E
[
J4
12

]
+ (N − 1)(N − 2)E

[
J2
12J

2
13

]
− 1

c2N4
(N − 1)2p2

=
3

c2
(N − 1)p(p− 1)

N4

+
3

c2
(N − 1)(N − 2)p

N4
+

1

c2
(N − 1)(N − 2)p(p− 1)

N4

− 1

c2
(N − 1)2p2

N4
+O

(
1

N2

)
.

Using the fact that

(N − 1)2p2 = (N − 1)(N − 2)p2 + (N − 1)p2

= (N − 1)(N − 2)p(p− 1) + (N − 1)(N − 2)p+ (N − 1)p(p− 1) + (N − 1)p,

and after some rearrangement of terms, we obtain, for large N ,

Var
(
∥J1∥22

)
=

2α(1 + α)

c2N
+O

(
1

N2

)
.
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V. SIMPLIFIED FEEDFORWARD MODEL

To understand mathematically why large SNNs converge to large RNNs as the load α → 0,

we consider a simplified feedforward model. This simplified model is obtained by keeping

network connections from ‘in’ to ‘rec’ neurons and removing all the other connections. After

this pruning procedure, we are left with two-layer feedforward networks where the ‘in’ neurons

make up the first layer, (hin
i (t), x

in
i (t)) 7→ (h

(1)
i (t), x

(1)
i (t)), and the ‘rec’ neurons make up the

second layer, (hrec
i (t), xrec

i (t)) 7→ (h
(2)
i (t), x

(2)
i (t)) (Fig. S1).

Iext(t)

hrec(t)hin(t)

Iext(t)

hrec(t)hin(t)

Iext(t)

h(2)(t)h(1)(t)

FIG. S1. Feedforward model as an simplification of the input-driven model.

In the feedforward SNN, the dynamics of the neurons of the first layer follows

τ
d

dt
h
(1)
j (t) = −h

(1)
j (t) +

σ√
p

p∑

µ=1

ξjµηµ(t), (S19a)

and the dynamics of the neurons in the second layer follows

τ
d

dt
h
(2)
i (t) = −h

(2)
i (t) +

N/2∑

j=1

JijS
(1)
j (t). (S19b)

Analogously, in the feedforward rate network, the dynamics of the units reads

τ
d

dt
x
(1)
j (t) = −x

(1)
j (t) +

σ√
p

p∑

µ=1

ξjµηµ(t), (S20a)

τ
d

dt
x
(2)
i (t) = −x

(2)
i (t) +

N/2∑

j=1

Jijϕ(x
(1)
j (t)). (S20b)

In the following, we assume that the systems (S19) and (S20) share the same initial

conditions at time 0, i.e. h
(1)
j (0) = x

(1)
j (0) and h

(2)
i (0) = x

(2)
i (0).

Theorem 4. If maxϕ < ∞, for any N > 1, and for any (feedforward) connectivity matrix

J, we have, for all i in the second layer,

lim
T→∞

1

T

∫ T

0

∣∣∣h(2)
i (t)− x

(2)
i (t)

∣∣∣ dt ≤
√

maxϕ

2τ
∥Ji∥2. (S21)
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Before proving the theorem, it is useful to rewrite the dynamics of the feedforward

SNN (S19) and the feedforward rate network (S20) in a more mathematical form, which will

help us to better disentangle the three independent sources of variability present in the model:

(i) the quenched disorder ξ, (ii) the external input signal {ηµ}pµ=1, and (iii) neuronal spike

noise. Let {πi}N/2
i=1 be a collection of N/2 independent Poisson random measures on R+ ×R+

with unit intensity [12] (see [13] and [14, Ch. 1.2] for gentle introductions on Poisson random

measures in the context of spiking neuron models) and let {Bµ(t)}pµ=1 be p independent

standard Brownian motions. We can rewrite the dynamics of the feedforward SNN (S19) as

a system of stochastic differential equations

τ dh
(1)
j (t) = −h

(1)
j (t)dt+

σ√
p

p∑

µ=1

ξjµdBµ(t), (S22a)

Z
(1)
j (t) =

∫

[0,t]×R+

1
z≤ϕ(h

(1)
j (s−))

πj(ds, dz), (S22b)

τ dh
(2)
i (t) = −h

(2)
i (t)dt+

N/2∑

j=1

JijdZ
(1)
j (t), (S22c)

where hj(s−) = limr→s− hj(r) denotes the left-handed limit (which implies that the dynamics

are defined in terms of Itô calculus). Formally, the spike train of neuron j, S
(1)
j (t) =

∑
k δ(t− tkj ) (where the {tkj}k are the spike times of neuron j), is simply S

(1)
j (t) = dZ

(1)
j (t)/dt.

The mathematical notation (S22), while less common in the theoretical neuroscience literature,

has the important advantage of clearly separating intrinsic neuronal noise, which stems from

the biophysics of single neurons and which is independent from one neuron to another, from

other sources of variability. Here, intrinsic neuronal spike noise is modelled by the independent

Poisson random measures πi [12, 13]. As stated in the main text, conditioned on the potentials

{h(1)
j (t)}j, the processes {S(1)

j (t) = dZ
(1)
j (t)/dt}j are independent inhomogeneous Poisson

processes with instantaneous firing rates {ϕ(h(1)
j (t))}j. To make the notation consistent

with the mathematical notation of Itô calculus, we have replaced the formal {ηµ(t)dt}pµ=1 in

the external input by {dBµ(t)}pµ=1, where {Bµ(t)}pµ=1 are independent standard Brownian

motions. Concurrently, the dynamics of the feedforward rate network (S20) becomes

τ dx
(1)
j (t) = −x

(1)
j (t)dt+

σ√
p

p∑

µ=1

ξjµdBµ(t), (S23a)

τ
d

dt
x
(2)
i (t) = −x

(2)
i (t) +

N/2∑

j=1

Jijϕ(x
(1)
j (t)). (S23b)
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We emphasize that in the feedforward SNN (S22) and the feedforward rate network (S23),

the potentials of the first layers h
(1)
j (t) and x

(1)
j (t) are equal since they integrate the same

external input σ√
p

∑p
µ=1 ξjµdBµ(t).

We can now prove Theorem 4.

Proof. By ergodicity,

lim
T→∞

1

T

∫ T

0

∣∣∣h(2)
i (t)− x

(2)
i (t)

∣∣∣ dt = lim
T→∞

E{πj}N/2
j=1 ,{Bµ}pµ=1

[∣∣∣h(2)
i (T )− x

(2)
i (T )

∣∣∣
]
.

Above and in the following, expectations are taken over the Poisson random measures {πj}N/2
j=1

and Brownian motions {Bµ}pµ=1 but not over ξ and J which can be arbitrary. By Jensen’s

inequality [2, Theorem 5.1 p. 132],

E{πj}N/2
j=1 ,{Bµ}pµ=1

[∣∣∣h(2)
i (T )− x

(2)
i (T )

∣∣∣
]
≤ E{πj}N/2

j=1 ,{Bµ}pµ=1

[(
h
(2)
i (T )− x

(2)
i (T )

)2]1/2
.

By a basic property of the conditional expectation,

E{πj}N/2
j=1 ,{Bµ}pµ=1

[(
h
(2)
i (T )− x

(2)
i (T )

)2]1/2

= E{πj}N/2
j=1 ,{Bµ}pµ=1

[
E{πj}N/2

j=1

[(
h
(2)
i (T )− x

(2)
i (T )

)2 ∣∣∣{Bµ}pµ=1

]]1/2
.

It remains to study the conditional expectation:

E{πj}N/2
j=1

[(
h
(2)
i (T )− x

(2)
i (T )

)2 ∣∣∣{Bµ}pµ=1

]

= E{πj}N/2
i=j







N/2∑

j=1

Jij

∫ T

0

1

τ
e−(T−s)/τdZ

(1)
j (s)−

N/2∑

j=1

Jij

∫ T

0

1

τ
e−(T−s)/τϕ(x

(1)
j (s))ds




2 ∣∣∣{Bµ}pµ=1




=

N/2∑

j=1

J2
ij Eπj



(∫ T

0

1

τ
e−(T−s)/τdZ

(1)
j (s)−

∫ T

0

1

τ
e−(T−s)/τϕ(x

(1)
j (s))ds

)2 ∣∣∣{Bµ}pµ=1


 ,

where in the last equality, we use the fact that the cross terms are null because the Poisson

random measures {π(1)
j }N/2

j=1 are independent and, for all j = 1, . . . , N/2,

Eπj

[∫ T

0

1

τ
e−(T−s)/τdZ

(1)
j (t)−

∫ T

0

1

τ
e−(T−s)/τϕ(x

(1)
j (s))ds

∣∣∣{Bµ}pµ=1

]
= 0.
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On the other hand, by Itô’s isometry for compensated jump processes [15, Lemma 4.2.2

p. 197],

Eπj



(∫ T

0

1

τ
e−(T−s)/τdZ

(1)
j (s)−

∫ T

0

1

τ
e−(T−s)/τϕ(x

(1)
j (s))ds

)2 ∣∣∣{Bµ}pµ=1




=

∫ T

0

(
1

τ
e−(T−s)/τ

)2

ϕ(x
(1)
j (s))ds.

Hence,

E{πj}N/2
i=j

[(
h
(2)
i (T )− x

(2)
i (T )

)2 ∣∣∣{Bµ}pµ=1

]
=

N/2∑

j=1

J2
ij

∫ T

0

(
1

τ
e−(T−s)/τ

)2

ϕ(x
(1)
j (s))

︸ ︷︷ ︸
≤maxϕ

ds

≤
N/2∑

j=1

J2
ij

1

2τ
(1− e−2T/τ )maxϕ.

In summary, we have

lim
T→∞

1

T

∫ T

0

∣∣∣h(2)
i (t)− x

(2)
i (t)

∣∣∣ dt = lim
T→∞

E{πj}N/2
j=1 ,{Bµ}pµ=1

[∣∣∣h(2)
i (T )− x

(2)
i (T )

∣∣∣
]

≤ lim
T→∞




N/2∑

j=1

J2
ij

1

2τ
(1− e−2T/τ )maxϕ




1/2

=

√
maxϕ

2τ
∥Ji∥,

which concludes the proof.

Finally, we can verify that Theorem 3, i.e.

∥Ji∥2 P−−−→
N→∞

√
α

c
,

implies that as N → ∞, the typical limit distance between a spiking neuron h
(2)
i (t) and the

corresponding rate unit x
(2)
i (t), limT→∞

1
T

∫ T

0

∣∣∣h(2)
i (t)− x

(2)
i (t)

∣∣∣ dt, scale as O(
√
α). Indeed,

we have that

∀ε > 0, P

(
lim
T→∞

1

T

∫ T

0

∣∣∣h(2)
i (t)− x

(2)
i (t)

∣∣∣ dt >
√

∥ϕ∥∞
2τc

√
α + ε

)
−−−→
N→∞

0,

since

P

(
lim
T→∞

1

T

∫ T

0

∣∣∣h(2)
i (t)− x

(2)
i (t)

∣∣∣ dt >
√

∥ϕ∥∞
2τc

√
α + ε

)

≤ P

(
∥Ji∥2 >

√
α

c
+

√
2τ

maxϕ
ε

)
−−−→
N→∞

0.
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VI. ADDING DIFFUSIVE MEMBRANE NOISE

In this work, we have used networks of linear-nonlinear-Poisson neurons to give concrete

examples of the concentration of measure phenomenon in networks of spiking neurons. This

choice of neuron model was mainly motivated by the fact that results in this case take a

particularly simple form. Namely, rate-based dynamics are described by standard RNN

dynamics. However, concentration of measure does not only occur with this specific neuron

model; the phenomenon also appears in networks with more general stochastic spiking

neurons. To illustrate this, we briefly discuss below how Theorem 4 in Sec. V for feedforward

networks of linear-nonlinear-Poisson neurons can be generalized to the case where diffusive

membrane noise is added to the potential dynamics.

Using the same feedfoward setup as in Sec. V, we consider the case where diffusive

membrane noise is added to the membrane potential dynamics of the neurons in the first

layer, i.e. the system of stochastic differential equations (S22) is replaced by

τ dh
(1)
j (t) = −h

(1)
j (t)dt+ σ̃ dWj(t) +

σ√
p

p∑

µ=1

ξjµdBµ(t), (S24a)

Z
(1)
j (t) =

∫

[0,t]×R+

1
z≤ϕ(h

(1)
j (s−))

πj(ds, dz), (S24b)

τ dh
(2)
i (t) = −h

(2)
i (t)dt+

N/2∑

j=1

JijdZ
(1)
j (t), (S24c)

where W1(t), . . . ,WN/2(t) are N/2 independent standard Brownian motions that are also

independent from the external input signals B1(t), . . . , Bp(t), and σ̃ > 0 is the intrinsic

membrane noise parameter. The diffusive noise σ̃ dWj(t) in (S24a) should be interpreted

as intrinsic membrane noise due, for example, to the effect of channel noise on membrane

potential dynamics. Note that, as in the original feedforward setup in Sec. V, neurons in

the second layer, Eq. (S24c), simply follow the dynamics of passive membranes (without

membrane noise).

We recall that, in Sec. V, Theorem 4 gives a bound for the deviation of the potentials h(2)
i (t)

in the second layer from their expectations x
(2)
i (t) = E{πj}N/2

j=1

[
h
(2)
i (t) | {Bµ}pµ=1

]
conditioned

on the external input signals {Bµ(t)}pµ=1. In order to obtain an analog of Theorem 4 for the

system with membrane noise (S24), our first task is to derive equations for the expectations

x
(2)
i (t) = E{Wj ,πj}N/2

j=1

[
h
(2)
i (t) | {Bµ}pµ=1

]

23



corresponding to the system (S24). By the linearity of the expectation, we have

τ
d

dt
x
(2)
i (t) = −x

(2)
i (t) +

N/2∑

j=1

Jij E{Wj ,πj}N/2
j=1

[
ϕ(h

(1)
j (t))

∣∣{Bµ}pµ=1

]
.

Thus, to derive a closed system of equations for the x
(2)
i (t), it suffices to notice that the

expected firing rates r
(1)
j (t) := E{Wj ,πj}N/2

j=1

[
ϕ(h

(1)
j (t))

∣∣{Bµ}pµ=1

]
of each individual neuron

j = 1, . . . , N/2 in the first layer are given by the solutions of Fokker-Planck equations

(conditioned on the external inputs Iextj (t)dt = σ√
p

∑p
µ=1 ξjµdBµ(t)) describing the evolution

of a time-varying probability densities q
(1)
j (·, t):

r
(1)
j (t) =

∫

R
ϕ(x)q

(1)
j (x, t)dx

τ
∂

∂t
q
(1)
j (x, t) =

∂

∂x

(
[x− Iextj (t)]q

(1)
j (x, t)

)
+

σ̃2

2τ

∂2

∂x2
q
(1)
j (x, t),

with initial conditions q
(1)
j (x, 0) = δ(x− h

(1)
j (0)) (δ denotes the Dirac delta function). The

Fokker-Planck equation above has an explicit solution

q
(1)
j (x, t) =

1√
2πΣ(t)

exp

(
−

(x− x̄
(1)
j (t))2

2Σ(t)

)
,

where the mean potential x̄(1)
j (t) follows the same dynamics as (S23a), i.e.

τ dx̄
(1)
j (t) = −x̄

(1)
j (t)dt+

σ√
p

p∑

µ=1

ξjµdBµ(t),

and the time-varying variance Σ(t) is

Σ(t) =
σ̃2

2τ
(1− e−2t/τ ).

This gives us generalized rate-based equations for the system with membrane noise (S24):

τ dx̄
(1)
j (t) = −x̄

(1)
j (t)dt+

σ√
p

p∑

µ=1

ξjµdBµ(t) (S25a)

τ
d

dt
x
(2)
i (t) = −x

(2)
i (t) +

N/2∑

j=1

JijΦ(x̄
(1)
j (t),Σ(t)), (S25b)

where the variance-dependent transfer function Φ(x̄,Σ) is

Φ(x̄,Σ) =

∫

R
ϕ(x)

1√
2πΣ

exp

(
− (x− x̄)2

2Σ

)
dx.
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Assuming that the transfer function ϕ is bounded, i.e. maxϕ < ∞, the statement and

the proof of Theorem 4 can be readily adapted to the system (S24) if the original rate-based

system (S23) is replaced by the generalized rate-based dynamics (S25).

To adapt the proof of Theorem 4, we simply need to notice that

EWj ,πj



(∫ T

0

1

τ
e−(T−s)/τdZ

(1)
j (s)−

∫ T

0

1

τ
e−(T−s)/τ

∫

R
ϕ(x)q

(1)
j (x, s)dx ds

)2 ∣∣∣{Bµ}pµ=1




= VarWj ,πj

(∫ T

0

1

τ
e−(T−s)/τdZ

(1)
j (s)

∣∣∣ {Bµ}pµ=1

)
,

and by the law of total variance,

VarWj ,πj

(∫ T

0

1

τ
e−(T−s)/τdZ

(1)
j (s)

∣∣∣ {Bµ}pµ=1

)

= EWj


Varπj

(∫ T

0

1

τ
e−(T−s)/τdZ

(1)
j (s)

∣∣∣Wj, {Bµ}pµ=1

)


+ VarWj


Eπj

[∫ T

0

1

τ
e−(T−s)/τdZ

(1)
j (s)

∣∣∣Wj, {Bµ}pµ=1

]
 .

But since

Varπj

(∫ T

0

1

τ
e−(T−s)/τdZ

(1)
j (s)

∣∣∣Wj, {Bµ}pµ=1

)
=

∫ T

0

(
1

τ
e−(T−s)/τ

)2 ∫

R
ϕ(h

(1)
j (s)) ds,

Eπj

[∫ T

0

1

τ
e−(T−s)/τdZ

(1)
j (s)

∣∣∣Wj, {Bµ}pµ=1

]
=

∫ T

0

1

τ
e−(T−s)/τϕ(h

(1)
j (s))ds,

we obtain

VarWj ,πj

(∫ T

0

1

τ
e−(T−s)/τdZ

(1)
j (s)

∣∣∣ {Bµ}pµ=1

)

=

∫ T

0

(
1

τ
e−(T−s)/τ

)2 ∫

R
ϕ(x)q

(1)
j (x, s)dx ds

+ VarWj

(∫ T

0

1

τ
e−(T−s)/τϕ(h

(1)
j (s))ds

∣∣∣ {Bµ}pµ=1

)
. (S26)

The second term on the right-hand side of (S26) implies that the final bound for the network

with membrane noise (S24) has to be looser than the bound (S21) for the network with

linear-nonlinear-Poisson neurons. From (S26), we can easily derive the final bound

lim
T→∞

1

T

∫ T

0

∣∣∣h(2)
i (t)− x

(2)
i (t)

∣∣∣ dt ≤
(√

maxϕ

2τ
+maxϕ

)
∥Ji∥2.
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Note that this bound might not be optimal and a tighter bound may be obtainable.

The model treated in this section is instructive as it illustrates an interesting fact: the

potentials in the second layer h(2)
j (t) can converge to x

(2)
j (t) in large networks (if the norms

∥Ji∥2 converge to 0) even if the the potentials in the first layer h(1)
j (t) do not converge to the

mean potentials x̄(1)
j (t). Indeed, in this model, we know that the variance of h(1)

j (t)− x̄
(1)
j (t) is

Σ(t), which does not depend on the network size. This shows that concentration of measure

can occur even in cases where membrane potentials dynamics are intrinsically noisy.
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