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a b s t r a c t

Surprising events trigger measurable brain activity and influence human behavior by affecting learning,
memory, and decision-making. Currently there is, however, no consensus on the definition of surprise.
Here we identify 18 mathematical definitions of surprise in a unifying framework. We first propose a
technical classification of these definitions into three groups based on their dependence on an agent’s
belief, show how they relate to each other, and prove under what conditions they are indistinguishable.
Going beyond this technical analysis, we propose a taxonomy of surprise definitions and classify them
into four conceptual categories based on the quantity they measure: (i) ‘prediction surprise’ measures
a mismatch between a prediction and an observation; (ii) ‘change-point detection surprise’ measures
the probability of a change in the environment; (iii) ‘confidence-corrected surprise’ explicitly accounts
for the effect of confidence; and (iv) ‘information gain surprise’ measures the belief-update upon a
new observation. The taxonomy poses the foundation for principled studies of the functional roles
and physiological signatures of surprise in the brain.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Imagine you open the curtains one morning and find the street
n front of your apartment covered by fresh snow. If you have
xpected a warm and sunny morning according to the weather
orecast, you feel ‘surprised’ as you see the white streets; as a
onsequence of surprise, the activity of many neurons in your
rain changes (Kolossa et al., 2015; Mars et al., 2008; Squires
t al., 1976) and your pupils dilate (Antony et al., 2021; Nassar
t al., 2012; Preuschoff et al., 2011). Surprise affects how we
redict and perceive our future and how we remember our past.
or example, some studies suggest that you would rely less on the
eather forecast for your future plans after the snowy morning
Behrens et al., 2007; Nassar et al., 2010; Xu et al., 2021). Other
tudies predict that you would remember more vividly the face
f the random stranger who walked past the street in that very
oment you felt surprised (Rouhani & Niv, 2021; Rouhani et al.,
018), and some predict that this moment of surprise might
ave even modified your memory of another snowy morning
n the past (Gershman et al., 2017; Sinclair & Barense, 2018).
o understand and explain the computational role of surprise in
ifferent brain functions, one first needs to ask ‘what does it really
ean to be surprised?’ and formalize how surprise is perceived
y our brain. For instance, when you see the white street, do
ou feel ‘surprised’ because what you expected turned out to be
rong (Faraji et al., 2018; Gläscher et al., 2010; Meyniel et al.,
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2016) or because you need to change your trust in the weather
forecast (Baldi, 2002; Liakoni et al., 2021; Schmidhuber, 2010)?

Computational models of perception, learning, memory, and
decision-making often assume that humans implicitly perceive
their sensory observations as probabilistic outcomes of a genera-
tive model with hidden variables (Findling et al., 2021; Fiser et al.,
2010; Friston, 2010; Gershman et al., 2017; Liakoni et al., 2021;
Soltani & Izquierdo, 2019; Yu & Dayan, 2005). In the example
above, the observation is whether it snows or not and the hidden
variables characterize how the probability of snowing depends on
old observations and relevant context information (such as the
current season, yesterday’s weather, and the weather forecast).
Different brain functions are then modeled as aspects of statistical
inference and probabilistic control in such generative models
(Behrens et al., 2007; Daw et al., 2011; Dubey & Griffiths, 2019;
Findling et al., 2021; Friston et al., 2017; Gershman et al., 2017;
Gläscher et al., 2010; Horvath et al., 2021; Liakoni et al., 2021;
Meyniel et al., 2016; Nassar et al., 2012; Yu & Dayan, 2005). In
these probabilistic settings, surprise of an observation depends
on the relation between the observation and our expectation of
what to observe.

In the past decades, different definitions and formal measures
of surprise have been proposed and studied (Baldi, 2002; Barto
et al., 2013; Faraji et al., 2018; Friston, 2010; Gläscher et al.,
2010; Kolossa et al., 2015; Liakoni et al., 2021; Palm, 2012;
Schmidhuber, 2010). These surprise measures have been success-
ful both in explaining the role of surprise in different brain func-
tions (Antony et al., 2021; Findling et al., 2021; Gershman et al.,

2017; Itti & Baldi, 2006; Rouhani & Niv, 2021; Xu et al., 2021)
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Fig. 1. Four typical experimental paradigms to study functional roles and physiological signatures of surprise in the brain. A. Volatile Gaussian task (Nassar
t al., 2012, 2010): Participants see a sequence of numbers randomly sampled from a Gaussian distribution whose mean is piece-wise constant but abruptly changes
t random points in time (change-points, e.g., t = 5 in the figure). The goal of participants is to predict the next observation; hence, the first few observations after
change-point are unexpected. Variants of this paradigm have been studied by O’Reilly et al. (2013) and Visalli et al. (2021). B. Volatile oddball task (Heilbron &

Meyniel, 2019; Meyniel, 2020): Participants see a sequence of binary stimuli (e.g., a red square and a blue disk). The stimulus frequencies are piece-wise constant
but abruptly change at random points in time (change-points, e.g., t = 6 in the figure). During the stationary periods between two consecutive change-points (before
t = 6 in the figure), one stimulus (the blue disk, called ‘deviant’) is less frequent than the other (the red square, called ‘standard’) and hence more surprising than
the other. Variants of the paradigm with more than 2 types of stimuli (Lieder et al., 2013; Mars et al., 2008) or without change-points (Huettel et al., 2002; Maheu
et al., 2019; Modirshanechi et al., 2019; Squires et al., 1976) have also been studied. C. Volatile two-armed bandit task (Behrens et al., 2007; Horvath et al., 2021):
articipants select one action (e.g., click on one of the gray disks in the figure) at a time and receive a reward value randomly sampled from a distribution specific
o the selected action. The reward distributions are piece-wise stationary but switch at random change points (e.g., t = 4 in the figure). Participants optimize reward
and have to adapt their strategy after a change-point. Variants of the paradigm include, e.g., multi-dimensional actions (Niv et al., 2015) or context-dependent reward
distributions (Rouhani & Niv, 2021). D. Multi-step decision-making task (Gläscher et al., 2010; Liakoni et al., 2022; Xu et al., 2021): Participants move between states
(e.g., images of different objects) by selecting one action (e.g., clicking on one of the disks in the figure) at a time. Assuming some transitions have been experienced
before (e.g., the ‘light bulb’ state followed by selecting the right action in the ‘cup’ state), observing the ‘light bulb’ state at t = 12 is expected, whereas observing
he ‘thumb’ state at t = 15 after the same stimulus-action sequence at t = 14 as at t = 11 is unexpected and hence surprising.
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nd in identifying signatures of surprise in behavioral and physi-
logical measurements (Gijsen et al., 2021; Gläscher et al., 2010;
aheu et al., 2019; Mars et al., 2008; Modirshanechi et al., 2019;
ubin et al., 2016). However, there are still many open questions
ncluding, but not limited to: (i) Are the quantities that different
efinitions of surprise measure conceptually different? (ii) Can
e identify mathematical relations between different surprise
efinitions? In particular, is one definition a special case of an-
ther one, completely distinct, or do they have some common
round?
In this work, we analyze and discuss 18 previously proposed

easures of surprise in a unifying framework. We first present
ur framework, assumptions, and notation in Section 2. Then, in
ection 3 to Section 6, we give definitions for each of the 18
urprise measures and show their similarities and differences.
n particular, we identify conditions that make different surprise
easures experimentally indistinguishable. Finally, in Section 7,
e build upon our theoretical analyses and propose a taxonomy
f surprise measures by classifying them into four conceptually
ifferent categories.

. Subjective world-model: A unifying generative model

Our goal is to study the theoretical properties of different for-
al measures of surprise in a common mathematical framework.
o do so, we need to make assumptions on how an agent (e.g., a
uman participant or an animal) thinks about its environment.
e assume that an agent thinks of its observations as probabilis-

ic outcomes of a generative model with hidden variables and,
ence, consider a generative model that captures several key fea-
ures of daily life and unifies many existing model environments
2

n neuroscience and psychology (cf. Section 2.2). More specifi-
ally, we assume that the generative model describes the sub-
ective interpretation of the environment from the point of view
f the agent and, importantly, that the agent takes the possibility
nto account that the environment may undergo abrupt changes
t unknown points in time (i.e., the environment is volatile),
imilar to the experimental paradigms studied by Behrens et al.
2007), Glaze et al. (2015), Heilbron and Meyniel (2019), Maheu
t al. (2019), Nassar et al. (2010), Xu et al. (2021). See Fig. 1
or four typical experimental paradigms that are used to study
ehavioral and physiological signatures of surprise. Note that we
o not assume that the environment has the same dynamics as
hose assumed by the agent.

.1. General definition

At each discrete time t ∈ {0, 1, 2, . . .}, the agent’s model of the
nvironment is characterized by a tuple of 4 random variables
X t , Y t , Θ t , C t ) (Fig. 2A). X t and Y t are observable, whereas Θ t
and C t are unobservable (hidden). We refer to X t as the cue and
to Y t as the observation at time t . Examples of an observation
are an image on a computer screen (Kolossa et al., 2015; Mars
et al., 2008) (e.g., Fig. 1), an auditory tone (Imada et al., 1993;
Lieder et al., 2013), and an electrical stimulation (Ostwald et al.,
2012). The cue variable X t can be interpreted as a predictor of the
next observation, since it summarizes the necessary information
needed for predicting the observation Y t . Examples of a cue
variable are the previous observation Y t−1 (Meyniel et al., 2016;
odirshanechi et al., 2019), the last action of a participant (which
e will denote by At−1) (Behrens et al., 2007; Horvath et al.,
021) (e.g., Fig. 1C-D), and a conditioned stimulus in Pavlovian
onditioning tasks (Gershman et al., 2017).
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Fig. 2. Subjective model of the environment. A. The Bayesian network (Barber, 2012) corresponding to the most general case of our generative model in Eqs. (1)
nd (2). The arrows show conditional dependence, the gray nodes show the hidden variables (C1:t+1 and Θ1:t+1), the red nodes show the observations (Y 1:t+1), and
he blue nodes show the cue variables (X1:t+1). A variety of tasks can be written in the form of a reduced version of our generative model. Specifically: B. Standard
enerative model for modeling and studying passive learning in experiments with volatile environments like the one in Fig. 1A (Adams & MacKay, 2007; Fearnhead
Liu, 2007; Liakoni et al., 2021; Nassar et al., 2012, 2010; Wilson et al., 2013), C. Generative model for modeling human inference about binary sequences in

xperiments like the one in Fig. 1B (Gijsen et al., 2021; Maheu et al., 2019; Meyniel et al., 2016; Modirshanechi et al., 2019; Mousavi et al., 2022), D. Generative
odel corresponding to variants of bandit and volatile bandit tasks like the one in Fig. 1C (Behrens et al., 2007; Findling et al., 2021; Horvath et al., 2021), where

he cue variable X t = At is a participant’s action, and E. Classic Markov Decision Processes (MDPs) to model experiments like the one in Fig. 1D (Daw et al., 2011;
läscher et al., 2010; Huys et al., 2015; Lehmann et al., 2019; Schultz et al., 1997; Sutton & Barto, 2018), where the cue variable X t = (At−1, Y t−1) consists of
revious action and observation. See Section 2.2 for details.
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At time t , given the cue variable X t , the agent assumes that
he observation Y t comes from a distribution that is conditioned
n X t and is parameterized by the hidden variable Θ t . We do
ot put any constraints on the sets to which X t , Y t , and Θ t

elong. We refer to Θ t as the environment parameter at time
. The sequence of variables Θ1:t = (Θ1, . . . , Θt ) describe the
emporal dynamics of the observations Y 1:t given the cue vari-
bles X1:t in the agent’s model of the environment. Similar to
ell-known models of volatile environments (Adams & MacKay,
007; Behrens et al., 2007; Fearnhead & Liu, 2007; Findling et al.,
021; Glaze et al., 2015; Heilbron & Meyniel, 2019; Liakoni et al.,
021; Meyniel et al., 2016; Nassar et al., 2012, 2010; Wilson et al.,
013; Xu et al., 2021; Yu & Cohen, 2009; Yu & Dayan, 2005), the
gent assumes that the environment undergoes abrupt changes at
andom points in time (e.g., Fig. 1A–C). An abrupt change at time
is specified by the event C t = 1 and happens with a probability
c ∈ [0, 1); otherwise C t = 0. If the environment abruptly
hanges at time t (i.e., C t = 1), then the agent assumes that the
nvironment parameter Θ t is sampled from a prior distribution
(0) independently of Θ t−1; if there is no change (C t = 0), then
t remains the same as Θ t−1. We refer to pc as the change-point
robability.
We use P to refer to probability distributions: Given a random

ariable W and a value w ∈ R, we use P(W = w) to refer to the
robability of event {W = w} for discrete random variables and,
ith a slight abuse of notation, to the probability density function
f W at W = w for continuous random variables. In general, we
enote random variables by capital letters and their values by
mall letters. However, for any pair of arbitrary random variables

and V and their values w and v, whenever there is no risk of
mbiguity, we either drop the capital- or the small-letter notation
nd, for example, write P(W = w|V = v) as P(w|v). When there
s a risk of ambiguity, we keep the capital notation for the random
ariables, e.g., we write P(W = v, V = v) as P(W = v, v). Given
his convention, the agent’s model of the environment described
bove is formalized in Definition 1 (cf. Fig. 2A).
3

efinition 1 (Subjective World-Model). An agent’s model of the
nvironment is defined for t > 0 as a joint probability distribu-
ion over Y 1:t , X1:t , Θ1:t , and C1:t as(
y1:t , x1:t , θ1:t , c1:t

)
:= P

(
c1

)
P
(
θ1

)
P
(
x1

)
P
(
y1|x1, θ1

)
×

t∏
τ=2

P
(
cτ

)
P
(
θ τ |θ τ−1, cτ

)
P
(
xτ |xτ−1, yτ−1

)
P
(
yτ |xτ , θ τ

)
,

(1)

here c1 is by definition equal to 1 (i.e., P(c1) := δ{1}(c1)),(
θ1

)
:= π (0)(θ1) for an arbitrary distribution π (0), and

P(cτ ) :=Bernoulli(cτ ; pc)(
θ τ |θ τ−1, cτ

)
:=π (0)(θ τ )δ{1}(cτ ) + δ{θτ−1}(θ τ )δ{0}(cτ )

P
(
yτ |xτ , θ τ

)
:=PY |X (yτ |xτ ; θ τ ),

(2)

here δ is the Dirac measure (cf. Table 1), and PY |X is a time-
nvariant conditional distribution of observations given cues.1 We
o not make any assumption about P

(
x1

)
and P

(
xτ |xτ−1, yτ−1

)
.

See Table 1 for a summary of the notation.

.2. Special cases and links to related works

Many of the commonly used experimental paradigms (e.g., see
ig. 1) can be formally described in our framework as special
ases of Definition 1. The standard generative models for study-
ng passive learning in volatile environments (Adams & MacKay,
007; Liakoni et al., 2021; Nassar et al., 2012, 2010) are obtained
f we remove the cue variables X1:t (Fig. 2B). For example, in
he Gaussian experiment of Nassar et al. (2010) (Fig. 1A), Y t is a
ample from a Gaussian distribution with a mean equal to Θ t and
known variance, and π (0) is a very broad uniform distribution.
The minimal model of human inference about binary se-

uences of Meyniel et al. (2016) (Fig. 2C) assumes that par-
icipants estimate probabilities of transitions between stimuli
nstead of stimulus frequencies, even when the stimuli are by
esign independent of each other. They show that such an as-
umption helps explaining many experimental phenomena. Their

1 The last line of Eq. (2) implies that P
(
Y τ = y|X τ = x, Θτ = θ

)
= P

(
Y τ ′ =

y|X ′ = x, Θ ′ = θ
)

= P (y|x; θ ) for any τ and τ ′
∈ {0, 1, 2, . . .}.
τ τ Y |X
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Table 1
Notation summary.
Notation Meaning

X t Cue at time t

Y t Observation at time t

Θ t Environment parameter at time t

C t Change-point indicator at time t

pc Change-point probability, i.e., the probability of C t = 1

PY |X (y|x; θ ) Time invariant distribution of observation y given cue x,
parameterized by θ

P The distribution corresponding to the subjective model of
the environment; see Definition 1

P(t) P conditioned on observations and cues until time t , i.e.,
x1:t and y1:t

P(t)
W An alternative notation for the distribution of random

variable W conditioned on x1:t and y1:t , i.e.,
P(t)
W (w) := P(t)(W = w)

π (0) Prior distribution over the environment parameter;
equivalently, the distribution of Θ t given C t = 1

π (t) The belief about parameter Θ t at time t , i.e.,
π (t)(θ ) := P(t)(Θ t = θ )

P(y|x; π (t)) The marginal probability of observation y given cue x and
belief π (t); see Eq. (4)

P(.|x; π (t)) The full marginal distribution over the space of
observations given cue x and belief π (t)

||w||1 ℓ1-norm of the vector w = (w1, . . . , wN ) ∈ RN defined as
||w||1 :=

∑N
n=1 |wn|

||w||2 ℓ2-norm of the vector w = (w1, . . . , wN ) ∈ RN defined as

||w||2 :=

√∑N
n=1 w2

n

δ{w∗} The Dirac measure at w∗ , i.e., P(W = w) = δ{w∗}(w)
implies that the probability of the event {W = w∗

} is one.

model is obtained as a special case of our generative model if the
cue variable X t is equal to the previous observation Y t−1. There,
Y t , conditioned on Y t−1, is a sample from a Bernoulli distribution
ith parameter Θ t . In this setting, we have P

(
xτ |xτ−1, yτ−1

)
:=

δ{yτ−1}(xτ ). This class of generative models has been used to study
the neural signatures of surprise via encoding (Gijsen et al., 2021;
Maheu et al., 2019) and decoding (Modirshanechi et al., 2019)
models in oddball tasks (Fig. 1B).

Variants of bandit and reversal bandit tasks (Behrens et al.,
2007; Findling et al., 2021; Horvath et al., 2021) can be modeled
by considering the cue variables X1:t as actions A1:t (Fig. 2D). For
example, in the experiment of Behrens et al. (2007) (Fig. 1C), X t =

At is one of the two possible actions that participants can choose,
Y t is the indicator of whether they are rewarded or not, and
Θ t indicates which action is rewarded with higher probability.
In this setting, P

(
xτ |xτ−1, yτ−1

)
= P

(
xτ

)
is the probability that

participants take action xτ , independently of the dynamics of the
environment.2

Classic Markov Decision Processes (MDPs) (Sutton & Barto,
2018) can also be written in the form of our generative model. To
reduce our generative model to an MDP, we set pc = 0, consider
the observation Y t as the pair of the current state and immediate
reward value, and consider the cue variable X t as the previous
pair of action and observation (or state) (At−1, Y t−1) (Fig. 2E). In
this setting, we have P

(
X τ = (aτ−1, y)|xτ−1, yτ−1

)
:= δ{yτ−1}(y)

2 We note that the action probability P
(
aτ

)
in bandit tasks often depends

n the whole history of the agent, i.e., a1:τ−1 and y1:τ−1 (Sutton & Barto, 2018).
n these situations, one can define xτ as the concatenation of a1:τ and y1:τ−1 .
n this case, the dynamics are described by P

(
X τ = (a′

1:τ , y′
1:τ−1)|xτ−1, yτ−1

)
:=

{a1:τ−1}(a′
1:τ−1)δ{y1:τ−1}(y′

1:τ−1)P
(
a′

τ |a1:τ−1, y1:τ−1
)

where P
(
a′

τ |a1:τ−1, y1:τ−1
)

is
he non-stationary action selection policy — cf. Sutton and Barto (2018).
 c

4

P
(
aτ−1|yτ−1

)
, where P

(
aτ−1|yτ−1

)
is called the action selection

policy in Reinforcement Learning theory (Sutton & Barto, 2018)
and is independent of the dynamics of the environment.3 The
theory of Reinforcement Learning for MDPs has been frequently
used in neuroscience and psychology to model human reward-
driven decision-making (Daw et al., 2011; Gläscher et al., 2010;
Huys et al., 2015; Lehmann et al., 2019; Niv, 2009; Xu et al., 2021)
(Fig. 1D).

2.3. Additional notation, belief, and marginal probability

We define P(t) as P conditioned on the sequences of observa-
tions y1:t and cue variables x1:t . For example, for an arbitrary ran-
dom variable W with value w, we write P(t)(w) := P(w|y1:t , x1:t ).
ollowing this notation, we define an agent’s belief about the
arameter Θt at time t as
(t)(θ ) := P(t)(Θt = θ ), (3)

hat is the posterior probability (or density, for continuous Θt )
f Θt = θ conditioned on y1:t and x1:t . The belief plays a
rucial role in the perception of surprise (cf. Section 3.1), and
e assume that an agent constantly updates its belief, through
ither exact or approximate Bayesian inference, as it makes new
bservations — see Barber (2012) and Liakoni et al. (2021) for
xamples of inference algorithms in generative models similar to
urs. According to exact Bayesian inference (Barber, 2012), the
pdated belief π (t+1)(θ ) = P(t+1)(Θ t+1 = θ ) can be found by
ormalizing the product of the prior belief P(t)(Θ t+1 = θ ) about
t+1 and the likelihood PY |X (yt+1|xt+1; θ ). In Section 4.1, we give a
imple and interpretable expression of the updated belief for the
enerative model of Definition 1 (cf. Proposition 1).
Another important quantity is the marginal probability of

bserving y given the cue x and a belief π (t):

(y|x; π (t)) := Eπ (t)

[
PY |X (y|x; Θ)

]
=

∫
PY |X (y|x; θ )π (t)(θ )dθ,

(4)

here the integration is replaced by summation whenever θ is
iscrete.

. Surprise measures and indistinguishability

Conditioned on the previous observations y1:t and cue vari-
bles x1:t+1, how surprising is the next observation yt+1? We ad-
ress this question by examining previously proposed measures
f surprise. In this section, we propose a technical classification
f different surprise measures and a notion of indistinguishability
etween different measures and, in the next three sections, we
efine all surprise measures in the same mathematical frame-
ork and discuss their differences and similarities. We present
he proofs of these results in Appendix.

.1. A technical classification

Given θ t+1, the observation yt+1 is independent of the pre-
ious observations y1:t and cue variables x1:t and only depends
n xt+1 (Fig. 2A). Hence, the influence of y1:t and x1:t on the
urprise of observing yt+1 is exclusively through the belief π (t),
hich indicates the importance of π (t) in surprise computation.

3 Similar to the case of bandit tasks, action selection policies in reinforcement
earning algorithms used for solving MDPs often depend on the sequence of
revious actions a1:τ−1 and observations y1:τ−1 , e.g., through estimation of action
alues (Sutton & Barto, 2018). In these situations, we can define xτ as the
oncatenation of a and y .
1:τ 1:τ−1
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Fig. 3. Technical classification of surprise measures based on the form of their dependence upon the agent’s belief. Surprise depends on expectations. Therefore,
ll surprise measures depend on the belief π (t) . However, the specific form of the dependence changes between one measure and another. ‘Observation-mismatch’
urprise measures use the marginal distribution P(.|xt+1; π (t)) (cf. Table 1) to calculate an estimate ŷt+1 of the next observation, which is then compared with
the real observation yt+1 by an error function such as ∥ŷt+1 − yt+1∥1 (cf. Table 1). ‘Probabilistic mismatch’ surprise measures use the marginal probability
P(yt+1|xt+1; π (t)) directly, without extracting a specific estimate. ‘Belief-mismatch’ surprise measures use the belief π (t) directly, without extracting the marginal
probability P(yt+1|xt+1; π (t)). See Section 3 for details.
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More precisely, a surprise measure is a function S : Y × X ×

P → R that takes an observation yt+1 ∈ Y , a cue xt+1 ∈

X , and a belief π (t)
∈ P as arguments and gives the value

S(yt+1|xt+1; π (t)) ∈ R as the corresponding surprise value. How-
ever, the specific form of how π (t) influences surprise compu-
tation changes between one measure and another. Based on
how they depend on π (t), we divide existing surprise measures
into three categories: (i) probabilistic mismatch, (ii) observation-
mismatch, and (iii) belief-mismatch surprise measures (Fig. 3).
Probabilistic mismatch surprise measures depend on the belief
π (t) only through the marginal probability P(yt+1|xt+1; π (t)); an
example is the Shannon surprise (Barto et al., 2013; Tribus, 1961).
In other words, probabilistic mismatch surprise depends only
on the integral P(yt+1|xt+1; π (t)) =

∫
PY |X (yt+1|xt+1; θ )π (t)(θ )dθ

(Eq. (4)) and is independent of other characteristics of the be-
lief π (t). Observation-mismatch surprise measures depend on π (t)

only through some estimate ŷt+1 of the next observation ac-
cording to the marginal distribution P(.|xt+1; π (t)) (cf. Table 1);
an example is the absolute difference between yt+1 and ŷt+1
(Nassar et al., 2010; Prat-Carrabin et al., 2021). In other words,
observation-mismatch surprise depends only on some statistics
(e.g., average or mode) of P(.|xt+1; π (t)) that is used as the es-
timate ŷt+1 and is independent of the other characteristics of
π (t) and P(.|xt+1; π (t)). To compute the belief-mismatch surprise
measures, however, we need to have the whole distribution π (t);
an example is the Bayesian surprise (Baldi, 2002; Schmidhu-
ber, 2010). In other words, neither the marginal distribution
P(.|xt+1; π (t)) nor the estimate ŷt+1 can solely determine the
value of a belief-mismatch surprise measure.

3.2. Notion of indistinguishability

Surprise measures are commonly used in experiments to study
whether a behavioral or physiological variable Z (e.g., the am-
plitude of the EEG P300 component (Kolossa et al., 2015)) is
sensitive to or representative of surprise. Given two measures of
surprise S and S ′, a typical experimental question is which one
of them (if any) more accurately explains the variations of the
variable Z (Gijsen et al., 2021; Kolossa et al., 2015; Ostwald et al.,

2012; Visalli et al., 2021); see Fig. 4A1. However, if there exists a b

5

strictly increasing mapping between S and S ′ (e.g., as in Fig. 4A2),
then the two surprise measures have the same explanatory power
with respect to Z — because any function of S can be written in
terms of S ′ and vice-versa. For example, assume that S = f (S ′)
for a strictly increasing function f . If an estimator of the variable
Z is found using the measure S as Ẑ = g(S), then we can rewrite
the same estimator in terms of S ′ as Ẑ = g̃(S ′) = g(f (S ′)).
Because g(S) and g̃(S ′) have the same explanatory power given
any function g and any measure of performance, the two surprise
measures S and S ′ are equally informative about the variable Z
in this regard.4 We formalize this idea in Definition 2.

Definition 2 (Indistinguishability). For the generative model of
Definition 1, we say S and S ′ are indistinguishable if there exists
a strictly increasing function f : R → R such that S = f (S ′) for
all choices of belief π (t), cue xt , and observation yt .

One of our goals in the next three sections is to determine
under what conditions different surprise measures are indistin-
guishable (Fig. 4B and Table 2).

4. Probabilistic mismatch surprise measures

4.1. Bayes Factor surprise

An abrupt change in the parameters of the environment influ-
ences the sequence of observations. Therefore, a sensible way to
define the surprise of an observation is that ‘surprise’ measures
the probability of an abrupt change in the eye of the agent,
given the present observation. To detect an abrupt change, it
is not enough to measure how unexpected the observation is

4 This statement is not necessarily true if one restricts the estimators to a
articular class of functions — e.g., if the estimators are constrained to be linear
ith respect to surprise measures while f is nonlinear. Such limitations can be
voided by using non-parametric statistical methods like Spearman or Kendall
orrelations (Corder & Foreman, 2014). For example, the Spearman correlation
a measure of monotonic relationship between two random variables) between
′ and Z is the same as the Spearman correlation between S = f (S′) and Z ,
ut this is not the case for Pearson correlation (a measure of linear relationship
etween two random variables) if f is nonlinear.
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Fig. 4. Indistinguishable surprise measures. A. A typical question in human and animal experiments is whether a surprise measure S explains the variations
f a behavioral or physiological variable Z better than an alternative surprise measure S′ . A1. A common experimental paradigm: A sequence of cues x1:t and
bservations y1:t is presented to participants, the sequence z1:t is measured, and the sequence of surprise values S1:t or S′

1:t is predicted by computational modeling.
hen statistical tools are used to study whether the sequence S1:t or S′

1:t is more informative about the sequence of measurements z1:t . A2. If there exists a strictly
ncreasing function f such that S′

= f (S), then the two surprise measures are equally informative about the measurable variable Z . In this case, S and S′ are
indistinguishable’ (cf. Definition 2). B. Schematic of the theoretical relation between different measures of surprise. A line connecting two measures indicates that
he two measures are indistinguishable, i.e., one is a strictly increasing function of the other, under the condition corresponding to the color and the type of the line.
he conditions are shown on the bottom right of the panel: a solid black line means the two measures are always indistinguishable; a dashed black line corresponds
o the condition pc = 0; a solid red line corresponds to the prior marginal probability P(.|xt+1; π (0)) being flat; a dashed red line corresponds to the prior belief
(0) being flat; a solid blue line corresponds to the limit of pc → 1; and a dashed blue line means that the relation holds only for some special cases (e.g., for
aussian tasks or when the observation is 1-dimensional). Table 2 summarizes which of these conditions are satisfied in several experimental paradigms used to
tudy measures of surprise. Two lines indicate that one of the conditions is sufficient for the two measures to be indistinguishable. The text beside each line shows
here in the text the existence of the mapping is proven, e.g., R1, C2, and P3 stand for Remark 1, Corollary 2, and Proposition 3, respectively. The purple box

ncludes surprise measures that are computed in the parameter (Θ t ) space, whereas the surprise measures outside of the purple box are computed in the space of
bservations (Y t ). See Section 3 for details.
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ccording to the current belief of the agent. Rather, the agent
hould measure how much more expected the new observation
s under the prior belief than under the current belief. The Bayes
actor surprise was introduced by Liakoni et al. (2021) to quantify
his concept of surprise, motivated by the idea that surprise
odulates the speed of learning in the brain (Frémaux & Gerstner,
016; Iigaya, 2016).
Here, we apply their definition to our generative model. Sim-

lar to Xu et al. (2021), we define the Bayes Factor surprise of
bserving yt+1 given the cue xt+1 as the ratio of the marginal
robability of observing yt+1 given xt+1 and C t+1 = 1 (i.e., as-

suming a change) to the marginal probability of observing yt+1
iven xt+1 and C t+1 = 0 (i.e. assuming no change):

SBF(yt+1|xt+1; π (t)) :=
P(t)

(
yt+1|xt+1, C t+1 = 1

)
P(t)

(
yt+1|xt+1, C t+1 = 0

)
=

P(yt+1|xt+1; π (0))
P(yt+1|xt+1; π (t))

.

(5)

The name arises because SBF(yt+1|xt+1; π (t)) is the Bayes Factor
(Bayarri & Berger, 1997; Kass & Raftery, 1995) used in statis-
tics to test whether a change has occurred at time t . For a
given P(yt+1|xt+1; π (0)), the Bayes Factor surprise is a decreas-
ing function of P(y |x ; π (t)): Hence, more probable events
t+1 t+1

6

are perceived as less surprising. However, the key feature of
SBF(yt+1|xt+1; π (t)) is that it measures not only how unexpected
(unlikely) the observation yt+1 is according to the current be-
lief π (t) but also how expected it would be if the agent had
reset its belief to the prior belief. More precisely, for a given
P(yt+1|xt+1; π (t)), the Bayes Factor surprise is an increasing func-
ion of P(yt+1|xt+1; π (0)).

Such a comparison is necessary to evaluate whether a reset
f the belief (or an increase in the update rate of the belief) can
e beneficial in order to have a more accurate estimate of the
nvironment’s parameters (cf. Soltani and Izquierdo (2019)). This
ntuition is formulated in a precise way by Liakoni et al. (2021)
n their Proposition 1, where they show that, for the generative
odel of Fig. 2B, the exact Bayesian inference for the update
f π (t) to π (t+1) upon observing yt+1 leads to a learning rule
odulated by the Bayes Factor surprise. Proposition 1 states that

his result is also true for our more general generative model
Fig. 2A).

roposition 1 (Extension of Proposition 1 of Liakoni et al. (2021)).
or the generative model of Definition 1, the Bayes Factor surprise
an be used to write the updated (according to exact Bayesian
nference) belief π (t+1), after observing y with the cue x , as
t+1 t+1
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Table 2
Indistinguishability conditions of Fig. 4 for several experimental paradigms. Publications specified by ⋄ use a generative model similar
to ours to describe their experiment from the point of view of participants, even if the actual experimental condition has a slightly
different structure compared to their generative model. Publications specified by ∗ include either (i) features that are not part of
our generative model or (ii) additional experiments not covered by our model. See the original publications for details and Fig. 1
for a description of four of the tasks. A value pc > 0 in the last column indicates a volatile environment; however, we note that
participants may by default assume that the environment is volatile even in situations where the actual experimental conditions
are stationary (Meyniel et al., 2016).

Task π (0) P(.|x; π (0)) pc
Nassar et al. (2012, 2010)⋄ Volatile Gaussian = flat = flat > 0

Glaze et al. (2015)⋄,∗ Volatile 2D Gaussian = flat ̸= flat > 0

O’Reilly et al. (2013) Volatile Gaussian with outliers = flat = flat > 0
Visalli et al. (2021)

Squires et al. (1976) Oddball = flat = flat = 0
Mars et al. (2008)⋄
Maheu et al. (2019)⋄ , etc.

Heilbron and Meyniel (2019)⋄ Volatile oddball = flat = flat > 0
Meyniel (2020)⋄

Ostwald et al. (2012)⋄ Roving oddball = flat = flat = 0
Lieder et al. (2013)

Gijsen et al. (2021)⋄ Volatile roving oddball = flat = flat > 0

Kolossa et al. (2015)⋄ Urn-ball ̸= flat ̸= flat = 0

Behrens et al. (2007)⋄ Reversal bandit = flat = flat > 0
Horvath et al. (2021)⋄

Rouhani and Niv (2021)∗ Volatile contextual bandit = flat = flat > 0
Findling et al. (2021)⋄

Gläscher et al. (2010) Multi-step decision-making = flat = flat = 0

Liakoni et al. (2022)⋄ Multi-step decision-making with outliers ̸= flat = flat = 0

Xu et al. (2021)⋄ Volatile multi-step decision-making ̸= flat = flat > 0
l
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π (t+1)(θ ) = (1 − γ t+1)π
(t+1)
integration(θ ) + γ t+1π

(t+1)
reset (θ ), (6)

where γ t+1 is an adaptation rate modulated by the Bayes Factor
surprise

γ t+1 :=
mSBF(yt+1|xt+1; π (t))

1 + mSBF(yt+1|xt+1; π (t))

m :=
pc

1 − pc
,

(7)

and

π
(t+1)
integration(θ ) :=

PY |X (yt+1|xt+1; θ )π (t)(θ )
P(yt+1|xt+1; π (t))

,

π
(t+1)
reset (θ ) :=

PY |X (yt+1|xt+1; θ )π (0)(θ )
P(yt+1|xt+1; π (0))

.

(8)

Therefore, the Bayes Factor surprise SBF controls the trade-off
between the integration of the new observation into the old belief
(via π

(t+1)
integration) and resetting the old belief to the prior belief (via

π
(t+1)
reset ).

4.2. Shannon surprise

No matter if there has been an abrupt change (C t+1 = 1) or
not (C t+1 = 0), an unlikely event may be perceived as surprising.
Therefore, another way to measure the surprise of an observation
is to quantify how unlikely the observation is in the eye of the
agent. Shannon surprise, also known as surprisal (Barto et al.,
2013), is a way to formalize this concept of surprise. It comes
from the field of information theory (Shannon, 1948) and statis-
tical physics (Tribus, 1961) and is widely used in neuroscience
(Gijsen et al., 2021; Kolossa et al., 2015; Konovalov & Krajbich,
2018; Kopp & Lange, 2013; Maheu et al., 2019; Mars et al., 2008;
Meyniel et al., 2016; Modirshanechi et al., 2019; Mousavi et al.,
2022; Visalli et al., 2021).
7

Formally, for the generative model of Definition 1, one can
define the Shannon surprise of observing yt+1 given the cue xt+1
as

SSh1(yt+1|xt+1; π (t)) := − logP(t)(yt+1|xt+1
)

= − log
(
pcP(yt+1|xt+1; π (0))+

(1 − pc)P(yt+1|xt+1; π (t))
)
,

(9)

where the 2nd equality is a result of the marginalization

P(t)(yt+1|xt+1
)

=

∑
c

P(t)(yt+1, C t+1 = c|xt+1
)
. (10)

The Shannon surprise SSh1 measures how unexpected or un-
ikely yt+1 is considering the possibility that there might have
een an abrupt change in the environment. As a result, for a fixed
(yt+1|xt+1; π (t)), the Shannon surprise is a decreasing function
f P(yt+1|xt+1; π (0)) (cf. Eq. (9)): It is less surprising to observe an
vent that is more probable under the prior belief because this
vent is also in total more probable if we consider the possibility
f an abrupt change at time t + 1. In contrast, the Bayes Factor
urprise is an increasing function of P(yt+1|xt+1; π (0)) (cf. Eq. (5)):
t ismore surprising to observe an event that is more probable un-
er the prior belief because such events indicate higher chances
hat an abrupt change has occurred. This essential difference
etween the Shannon and the Bayes Factor surprise has been
xploited by Liakoni et al. (2021) to propose experiments where
hese two measures of surprise make different predictions.

Experimental evidence (Nassar et al., 2012, 2010) indicates
hat in volatile environments like the one in Fig. 2B, human
articipants do not actively consider the possibility that there
ay be an abrupt change while predicting the next observation
t+1 — even though they update their belief after observing yt+1
y considering the possibility that there might have been a change
efore the current observation at time t+1. To arrive at a Shannon
urprise measure consistent with this observation, we suggest a
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econd definition:

Sh2(yt+1|xt+1; π (t)) := − logP(t)(yt+1|xt+1, C t+1 = 0
)

= − log P(yt+1|xt+1; π (t)).
(11)

In other words, SSh2(yt+1|xt+1; π (t)) neglects the potential pres-
ence of change-points, and, therefore, it is independent of both pc
and P(yt+1|xt+1; π (0)). For a non-volatile environment that does
not allow for abrupt changes (pc = 0), the two definitions of
Shannon surprise are identical: SSh1 = SSh2 (Fig. 4B).

Proposition 2 shows that the Bayes Factor surprise SBF is
related to SSh1 and SSh2:

Proposition 2 (Relation between the Shannon Surprise and the
Bayes Factor Surprise). For the generative model of Definition 1, the
Bayes Factor surprise SBF(yt+1|xt+1; π (t)) can be written as

SBF(yt+1|xt+1; π (t)) =
(1 − pc)e∆SSh1(yt+1|xt+1;π (t))

1 − pce∆SSh1(yt+1|xt+1;π (t))

= e∆SSh2(yt+1|xt+1;π (t)),

(12)

here
SShi(yt+1|xt+1; π (t)) := SShi(yt+1|xt+1; π (t))−

SShi(yt+1|xt+1; π (0))
(13)

for i ∈ {1, 2}.

Proposition 2 states that the Bayes Factor SBF(yt+1|xt+1; π (t))
has a behavior similar to the difference in Shannon surprise
(i.e., ∆SSh1 or ∆SSh2) as opposed to Shannon surprise itself
(i.e., SSh1 or SSh2). The difference in Shannon surprise (i.e., ∆SSh1
r ∆SSh2) compares the Shannon surprise under the current belief

with that under the prior belief. Two direct consequences of this
proposition are summarized in Corollaries 1 and 2.

Corollary 1 states that the modulation of learning as presented
n Proposition 1 can also be written in the form of the difference
n Shannon surprise (i.e., ∆SSh1 or ∆SSh2).

orollary 1. The adaptation rate γ t+1 in Proposition 1 can be
written as

γ t+1 = pc exp
(
∆SSh1(yt+1|xt+1; π (t))

)
γ t+1 = Sigmoid

(
m̃∆SSh2(yt+1|xt+1; π (t))

)
,

(14)

with m̃ := log pc
1−pc

= logm (cf. Proposition 1) and Sigmoid(u) :=

1
1+e−u

Corollary 2 indicates that, under a flat prior, the Bayes Factor
urprise and the two definitions of the Shannon surprise are
ndistinguishable from each other (Fig. 4B):

orollary 2 (Flat Prior Prediction). For the generative model of
Definition 1, if the probability of observing yt+1 with the cue xt+1 is
flat under the prior belief π (0) (i.e., if P(.|xt+1; π (0)) is uniform), then
there are strictly increasing mappings between SBF(yt+1|xt+1; π (t)),
SSh1(yt+1|xt+1; π (t)), and SSh2(yt+1|xt+1; π (t)).

A consequence of Corollary 2 is that experiments with flat
marginal priors of the agent cannot be used to distinguish SBF
from SSh1 or SSh2 (Fig. 4).

4.3. State prediction error

The State Prediction Error (SPE) was introduced by Gläscher
et al. (2010) in the context of model-based reinforcement learning
in Markov Decision Processes (MDPs — cf. Fig. 2E) (Sutton & Barto,
2018). Similar to the Shannon surprise, the SPE considers less
probable events as the more surprising ones.
8

Whenever observations y1:t come from a discrete distribution
so that we have PY |X (yt+1|xt+1; θ ) ∈ [0, 1] for all θ , xt+1, and
yt+1, we can generalize the definition of Gläscher et al. (2010)
to the setting of our generative model. Analogously to our two
definitions of Shannon surprise (cf. Eqs. (9) and (11)), we give also
two definitions for SPE:

SSPE1(yt+1|xt+1; π (t)) := 1−P(t)(yt+1|xt+1
)

= 1−
(
pcP(yt+1|xt+1; π (0))+

(1 − pc)P(yt+1|xt+1; π (t))
)
,

(15)

nd

SPE2(yt+1|xt+1; π (t)) :=1 − P(t)(yt+1|xt+1, C t+1 = 0
)

=1 − P(yt+1|xt+1; π (t)).
(16)

n non-volatile environments (pc = 0), the two definitions of SPE
re identical (Fig. 4B). In particular, in an MDP without abrupt
hanges (pc = 0; Fig. 2E), both definitions are equal to 1 −
(t)(st , at → st+1), where P(t)(st , at → st+1) is an agent’s estimate
at time t) of the probability of the transition to state st+1 after
aking action at in state st ; cf. Gläscher et al. (2010).

Proposition 3 states that both definitions (SSPE1 and SSPE2) can
lways be written as strictly increasing functions of Shannon
urprise (Fig. 4B):

roposition 3 (Relation between the Shannon Surprise and the SPE).
or the generative model of Definition 1, for i ∈ {1, 2}, the state
rediction error SSPEi(yt+1|xt+1; π (t)), can be written as

SPEi(yt+1|xt+1; π (t)) = 1 − exp
(
−SShi(yt+1|xt+1; π (t))

)
. (17)

Therefore, the SPE and the Shannon surprise are indistinguish-
ble (Fig. 4).

. Observation-mismatch surprise measures

.1. Absolute and squared errors

Assume an agent predicts ŷt+1 for the next observation yt+1.
hen, a measure of surprise can be defined as the prediction
rror or the mismatch between the prediction ŷt+1 and the actual
bservation yt+1 (Nassar et al., 2012, 2010; Prat-Carrabin et al.,
021) (Fig. 3). For the sake of completeness, we discuss four
ossible definitions for observation-mismatch surprise measures.
Before turning to an ‘observation-mismatch’, we first need to

efine an agent’s prediction for the next observation. Analogously
o our two definitions for the Shannon surprise (cf. Eqs. (9) and
11)), we define two different predictions for the next observation
t+1 given the cue xt+1

5:

1[Y t+1] := pcEP(.|xt+1;π (0))[Y t+1]+

(1 − pc)EP(.|xt+1;π (t))[Y t+1]
(18)

nd

2[Y t+1] := EP(.|xt+1;π (t))[Y t+1]. (19)

lthough E1[Y t+1] is a more reasonable prediction for yt+1 given
he fact that there is always a possibility of an abrupt change
ccording to our generative model of the environment (Defini-
ion 1), Nassar et al. (2010) have shown that, in a Gaussian task
cf. Fig. 1A), E2[Y t+1] explains human participants’ predictions
etter than E1[Y t+1].

5 The evaluation of the full distribution P(.|xt+1; π (t)) may not always be
necessary for the computation of E1 and E2 (Aguilera et al., 2022; Liakoni et al.,
2021; Nassar et al., 2010).
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We note that the observation yt+1 is, in general,
multi-dimensional. As two natural ways of measuring mismatch,
we define the squared and the absolute error surprise, for i ∈

{1, 2}, as

SAb,i(yt+1|xt+1; π (t)) := ∥yt+1 − Ei[Y t+1]∥1

SSq,i(yt+1|xt+1; π (t)) :=

(
∥yt+1 − Ei[Y t+1]∥2

)2
,

(20)

where ∥.∥1 and ∥.∥2 stand for the ℓ1- and ℓ2-norms (cf. Table 1),
respectively, and E1 and E2 are defined in Eq. (18) and Eq. (19),
respectively. Similar definitions have been used in neuroscience
(Nassar et al., 2010; Prat-Carrabin et al., 2021) and machine learn-
ing (Burda et al., 2019; Pathak et al., 2017). In Propositions 4–6,
we show for three special cases that the absolute and the squared
error surprise can be written as strictly increasing functions of
either each other or the SPE and the Shannon surprise (Fig. 4B).

Proposition 4 (Relation between the Absolute and Squared Errors
and the SPE for Categorical Distributions). For the generative model
of Definition 1, if Y t+1 is represented as one-hot coded vectors,
i.e., vectors with one element equal to 1 and the others equal to 0,
then we have, for i ∈ {1, 2},

SAbi(yt+1|xt+1; π (t)) = 2SSPEi(yt+1|xt+1; π (t)), (21)

and

SSqi(yt+1|xt+1; π (t)) =2SSPEi(yt+1|xt+1; π (t))+

Conf.
[
P(.|xt+1; π (t))

]
,

(22)

where Conf.
[
P(.|xt+1; π (t))

]
can be seen as a measure of confidence

in the prediction (see Appendix).

Proposition 5 (Relation between the Squared Error Surprise and the
Shannon Surprise for Gaussian Distributions — from Pathak et al.
(2017)). For the generative model of Definition 1, if the marginal
distribution of Y t+1 ∈ RN given the cue xt+1 and the belief π (t) is
a Gaussian distribution with a covariance matrix equal to σ IN×N ,
where IN×N is the N × N identity matrix, then SSq2(yt+1|xt+1; π (t))
is a strictly increasing function of SSh2(yt+1|xt+1; π (t)).

Proposition 6 (Observation-Mismatch Surprise Measures for 1-D
Observations). For the generative model of Definition 1, if Y t ∈ R,
then we have SSqi = S2

Abi for i ∈ {1, 2} implying that the two
observation-mismatch surprise measures are indistinguishable.

We note that, according to Proposition 3, the SPE is a strictly
increasing function of the Shannon surprise. Hence, for cate-
gorical distributions with one-hot coding, the SPE, the Shannon
surprise, and the absolute error surprise are indistinguishable,
and for Gaussian distributions with scaled identity covariance,
the SPE, the Shannon surprise, and the squared error surprise are
indistinguishable (Fig. 4).

5.2. Unsigned reward prediction error

A particular form of observation-mismatch surprise in the con-
text of reward-driven decision making is the Unsigned Reward
Prediction Error (uRPE, i.e., the absolute value of Reward Predic-
tion Error) (Hayden et al., 2011; Pearce & Hall, 1980; Roesch et al.,
2012; Rouhani & Niv, 2021; Talmi et al., 2013). In this section,
we first discuss the definition of the uRPE as it often appears in
experimental studies and then analyze a generalized definition of
the uRPE in general sequential decision-making tasks.

Many of the experimental paradigms (e.g., Hayden et al., 2011;
Roesch et al., 2012; Talmi et al., 2013) for the study of uRPE can

be modeled by a non-volatile (i.e., pc = 0) contextual bandit task i

9

where, given a context st (e.g., conditioned stimulus), the agent
takes an action at and receives a real-valued reward r t+1. The
uRPE corresponding to the tuple (st , at , r t+1) is (Sutton & Barto,
2018)

uRPE(st , at → r t+1) := |r t+1 − Q (t)(st , at )|, (23)

where Q (t)(st , at ) is the latest estimate of the expectation of Rt+1
given st and at . The generative model of Definition 1 is reduced
to a model of contextual bandit tasks if we put X t+1 := (St , At )
and Y t+1 := Rt+1. Then, the unsigned reward prediction error
uRPE(st , at → r t+1) is syntactically equal to SAb (cf. Eq. (20);
note that E1 = E2 since pc = 0) and indistinguishable from SSq
(Proposition 6):

Remark 1 (Relation between the common definition of uRPE and
the other two Observation-Mismatch Surprise measures). The uRPE
signal that was previously investigated in many experimental
studies (Eq. (23)) (Hayden et al., 2011; Pearce & Hall, 1980;
Roesch et al., 2012; Talmi et al., 2013) is a special case of the
absolute and the squared error surprise (Eq. (20)).

However, one can go beyond contextual bandit tasks and
define uRPE for a general Markov Decision Process (MDP) (Sutton
& Barto, 2018). To reduce our generative model of Definition 1 to
a (potentially volatile, i.e., pc ≥ 0) MDP, we put the cue variable
X t+1 equal to the state–action pair (St , At ) and the observation
Y t+1 equal to the pair of the next state St+1 and the next extended
reward R̃t+1 that we define as

R̃t+1 := Rt+1 + λV (St+1), (24)

where λ ∈ [0, 1) is the discount factor in infinite-horizon re-
inforcement learning (Sutton & Barto, 2018), and V (St+1) is the
perceived value of state St+1. Here, we do not discuss the exact
definition of V and how it is computed; we only assume that each
state s has a value V (s) that is informative about the expected
amount of total reward that one can collect starting from state
s — see Sutton and Barto (2018) for details. Analogously to our
two definitions for the absolute and the squared error surprise
(cf. Eq. (20)), we give two definitions of uRPE:

SuRPEi(yt+1|xt+1;π
(t)) := |r t+1 + λV (st+1) − Qi

(t)(st , at )|, (25)

here i ∈ {1, 2} and Qi
(t)(st , at ) := Ei[R̃t+1] (cf. Eq. (18), Eq. (19),

nd Eq. (24)). Eq. (25) implies that the uRPE surprise is like the
bsolute error surprise if an agent focuses exclusively on the
xtended reward r̃ t+1 and ignores the state st+1. We make this
ntuition formal in Proposition 7.

roposition 7 (Relation between the uRPE, the Absolute Error, and
quared Error Surprise Measures). For the generative model of Def-
nition 1, for i ∈ {1, 2}, the unsigned reward prediction error
uRPEi(yt+1|xt+1; π (t)) can be written as

uRPEi(yt+1|xt+1; π (t)) = SAbi(yt+1|xt+1; π (t))−

SAbi(st+1|xt+1; π (t))
(26)

nd

SuRPEi(yt+1|xt+1; π (t))
)2

= SSqi(yt+1|xt+1; π (t))−

SSqi(st+1|xt+1; π (t)).
(27)

here SAbi(st+1|xt+1; π (t)) := ∥st+1 −Ei[St+1]∥1 and SSqi(st+1|xt+1;
(t)) := ∥st+1 − Ei[St+1]∥

2
2 (Eq. (20)).

Therefore, if observation yt+1 does not include state st+1
e.g., in contextual bandit tasks, similar to Hayden et al. (2011),
oesch et al. (2012), Talmi et al. (2013)) or if all possible values
f state st+1 are equally surprising (i.e., have constant SSqi or SAbi,
imilar to the experiment of Rouhani and Niv (2021)), then SuRPEi

s indistinguishable from SAbi and SSqi (Fig. 4).
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. Belief-mismatch surprise measures

.1. Bayesian surprise

Another way to think about surprise is to define surprising
vents as those that change an agent’s belief about the world.
ayesian surprise (Baldi, 2002; Baldi & Itti, 2010; Schmidhuber,
010) is a way to formalize this concept of surprise. Whereas
he Bayes Factor surprise measures how likely it is that the en-
ironment has changed given the new observation, the Bayesian
urprise measures how much the agent’s belief changes given the
ew observation.
Bayesian surprise (Baldi, 2002) has been originally introduced

n non-volatile environments, i.e., where there is no change (pc =

) and as a result Θ1 = Θ2 = · · · = Θ t = Θ . In this case,
he Bayesian surprise of observing yt+1 with cue xt+1 is defined
as DKL[P

(t)
Θ ||P(t+1)

Θ ] (Baldi, 2002; Baldi & Itti, 2010; Schmidhuber,
2010), where DKL stands for the Kullback–Leibler (KL) divergence
(Cover, 1999), and P(t)

Θ is an alternative notation for the distri-
bution of Θ conditioned on x1:t and y1:t (cf. Table 1). Hence,
in non-volatile environments, Bayesian surprise measures the
pseudo-distance DKL between two distributions, i.e., the belief
π (t)

= P(t)
Θ before and the belief π (t+1)

= P(t+1)
Θ after observing

yt+1. To generalize this definition to volatile environments, we
have to choose two equivalent distributions that we want to
compare. The natural choice for P(t+1)

Θ is P(t+1)
Θt+1

= π (t+1); however,
it is unclear whether P(t)

Θ should be taken as the momentary belief
P(t)

Θt
= π (t) or its one-step forward-propagation P(t)

Θt+1
before the

next observation yt+1 is integrated. If pc ̸= 0, the two choices are
ifferent:
(t)

= P(t)
Θt

̸= P(t)
Θt+1

= pcπ (0)
+ (1 − pc)π (t). (28)

herefore, for the case of volatile environments, we give two
efinitions for the Bayesian surprise:

Ba1(yt+1|xt+1; π (t)) := DKL

[
pcπ (0)

+ (1 − pc)π (t)
||π (t+1)

]
, (29)

nd

Ba2(yt+1|xt+1; π (t)) := DKL

[
π (t)

||π (t+1)
]
. (30)

he first definition is more consistent with the original defini-
ion of the Bayesian surprise (Baldi, 2002; Baldi & Itti, 2010;
chmidhuber, 2010) applied to our generative model because the
elief before the observation should include the knowledge that
he environment is volatile. However, the second definition looks
ore intuitive from the neuroscience perspective (Gijsen et al.,
021; Mousavi et al., 2022). Note that, in Eqs. (29) and (30), the
bservation yt+1 does not appear explicitly on the right hand side;
he observation has, however, influenced the update of the belief
o its new distribution π (t+1). For the case of pc = 0, the two
efinitions are identical (Fig. 4B).
In Proposition 8 and Remark 2, we show that the Bayesian

urprise is correlated with the difference between the Shannon
urprise and its expectation (over all possible values of Θ t+1).

roposition 8 (Relation between the Bayesian Surprise and the
hannon Surprise). In the generative model of Definition 1, the
ayesian surprise can be written as

SBa1(yt+1|xt+1; π (t)) =pcEπ (0)

[
SSh2(yt+1|xt+1; δ{Θ})

]
+

(1 − pc)Eπ (t)

[
SSh2(yt+1|xt+1; δ{Θ})

]
−

(t)

(31)
SSh1(yt+1|xt+1; π ),
10
nd

Ba2(yt+1|xt+1; π (t)) =Eπ (t)

[
SSh2(yt+1|xt+1; δ{Θ})

]
−

SSh1(yt+1|xt+1; π (t))+

DKL

[
π (t)

||pcπ (0)
+ (1 − pc)π (t)

]
,

(32)

here δ{θ} is the Dirac measure at θ (cf. Table 1).

emark 2. As a direct consequence of Proposition 8, when the
hange point probability is zero, i.e. pc = 0, the Bayesian surprise
s equal to the expected Shannon surprise minus the Shannon
urprise, i.e.,

SBa(yt+1|xt+1; π (t)) =Eπ (t)

[
SSh(yt+1|xt+1; δ{Θ})

]
−

SSh(yt+1|xt+1; π (t)),
(33)

here SBa = SBa1 = SBa2 and SSh = SSh1 = SSh2.

There are two consequences of this observation. First, Bayesian
urprise is distinguishable from Shannon surprise since it cannot
e found only as a function of Shannon surprise. Second, we
eed access to the full belief distribution π (t) for computing the
xpectation (Fig. 3).
In general, surprise measures similar to the Bayesian sur-

rise can be defined also by measuring the change in the be-
ief via distance or pseudo-distance measures different from the
L-divergence (Baldi, 2002).

.2. Postdictive surprise

We saw that the Bayesian surprise measures how much the
ew belief π (t+1) has changed after observing yt+1. Kolossa et al.
2015) introduced ‘postdictive surprise’ with a similar idea in
ind but focused on changes in the marginal distribution
(.|xt+1; π (t+1)) (cf. Eq. (4)). More precisely, whereas the Bayesian
urprise measures the amount of update in the space of dis-
ributions over the parameters (i.e., how differently the agent
hinks about the parameters), the postdictive surprise measures
he amount of update in the space of distributions over the
bservations (i.e., how differently the agent predicts the next
bservations).
Analogous to our two definitions for the Bayesian surprise

Eqs. (29) and (30)), there are two definitions for the postdictive
urprise in volatile environments:

SPo1(yt+1|xt+1; π (t)) :=

KL

[
pcP

(
.|xt+1; π (0))

+ (1 − pc)P
(
.|xt+1; π (t))

||

P
(
.|xt+1; π (t+1)) ]

,

(34)

nd

Po2(yt+1|xt+1; π (t)) := DKL

[
P
(
.|xt+1; π (t))

||

P
(
.|xt+1; π (t+1)) ]

,
(35)

here the dot refers to a dummy variable y that is integrated out
hen evaluating DKL (cf. Table 1). Note that for pc = 0, the two
efinitions are identical (Fig. 4B).
Although the amount of update is computed over the space of

bservations, SPo1 and SPo2 cannot be categorized as probabilistic
ismatch surprise measures, since the update depends explicitly
n the belief π (t). The statement is further explained in our
emma 1 in Appendix.
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.3. Confidence corrected surprise

Since surprise arises when an expectation is violated, the
iolation of an agent’s expectation should be more surprising
hen the agent is more confident about its expectation. Based
n the observation that neither Shannon nor Bayesian surprise
xplicitly captures the concept of confidence, Faraji et al. (2018)
roposed the ‘Confidence Corrected Surprise’ as a new measure
f surprise that explicitly takes confidence into account.
To define the Confidence Corrected surprise, we first define

flat as the flat (uniform) distribution over the space of parame-
ers, i.e., over the set to which Θ t belongs. Then, following Faraji
t al. (2018), we define the normalized likelihood after observing
t+1 (i.e., the posterior given the flat prior) as

flat(θ |yt+1, xt+1) :=
PY |X (yt+1|xt+1; θ )πflat(θ )

P(yt+1|xt+1; πflat)

=
PY |X (yt+1|xt+1; θ )∫
PY |X (yt+1|xt+1; θ )dθ

.

(36)

f the prior π (0) is equal to πflat (i.e., if the prior is uniform),
then πflat(θ |yt+1, xt+1) is the same as π

(t+1)
reset (θ ) defined in Propo-

sition 1. Note that the prior πflat does not necessarily need to be a
proper distribution (i.e., does not necessarily need to be normal-
ized) as long as

∫
PY |X (yt+1|xt+1; θ )dθ is finite and the posterior

πflat(.|yt+1, xt+1) is a proper distribution (Efron & Hastie, 2016).
Using this terminology, the original definition for the Confidence
Corrected surprise is (Faraji et al., 2018)

SCC1(yt+1|xt+1; π (t)) := DKL

[
π (t)

||πflat(.|yt+1, xt+1)
]
. (37)

To interpret SCC1, Faraji et al. (2018) defined the commitment
(or confidence) C[π ] corresponding to an arbitrary belief π as its
negative entropy (Cover, 1999), i.e.,

C[π ] := Eπ

[
logπ (Θ)

]
. (38)

Then, in a non-volatile environment (i.e., pc = 0), they show that
SCC1 can be written as (Faraji et al., 2018)

SCC1(yt+1|xt+1; π (t)) =SSh(yt+1|xt+1; π (t))+

SBa(yt+1|xt+1; π (t))+

C
[
π (t)]

− A(yt+1, xt+1),

(39)

where A(yt+1, xt+1) := SSh(yt+1|xt+1; πflat) + C[πflat] is indepen-
dent of the current belief π (t). Note that because pc = 0, we
have SSh1 = SSh2 and SBa1 = SBa2. Therefore, in a non-volatile
environment (i.e., pc = 0), SCC1 is correlated with the sum of the
Shannon and the Bayesian surprise regularized by the confidence
of the agent’s belief. However, such an interpretation is no longer
possible in volatile environments (pc > 0), and Eq. (39) must be
replaced by Proposition 9.

In order to account for the information of the true prior π (0)

and to avoid cases where πflat(.|yt+1, xt+1) is not a proper distri-
bution, we also give a 2nd definition for the Confidence Corrected
surprise as

SCC2(yt+1|xt+1; π (t)) := DKL

[
π (t)

||π
(t+1)
reset

]
, (40)

where π
(t+1)
reset (θ ) is defined in Proposition 1. Whenever π (0)

= πflat,
the two definitions are identical (Fig. 2B). Proposition 9 shows
how the Confidence Corrected surprise relates to the Shannon
surprise, the Bayesian surprise, and the confidence in the general
case.

Proposition 9 (Relation between the Confidence Corrected Surprise,
Shannon Surprise, and Bayesian Surprise). For the generative model
11
of Definition 1, the original definition of the Confidence Corrected
surprise can be written as

SCC1(yt+1|xt+1; π (t)) =

SSh1(yt+1|xt+1; π (t)) − SSh2(yt+1|xt+1; πflat)

+ SBa2(yt+1|xt+1; π (t))

− DKL

[
π (t)

||pcπ (0)
+ (1 − pc)π (t)

]
+ C

[
π (t)]

− C
[
πflat

]
,

(41)

nd our 2nd definition can be written as

CC2(yt+1|xt+1; π (t)) = ∆SSh1(yt+1|xt+1; π (t))

+ SBa2(yt+1|xt+1; π (t))

− DKL

[
π (t)

||pcπ (0)
+ (1 − pc)π (t)

]
+ DKL

[
π (t)

||π (0)
]
.

(42)

Proposition 9 conveys three important messages. First, both
efinitions of the Confidence Corrected surprise depend on differ-
nces in the Shannon surprise as opposed to the Shannon surprise
tself (cf. first line in Eqs. (41) and (42)). Second, both definitions
epend on the difference between the Bayesian surprise (i.e., the
hange in the belief given the new observation) and the a priori
xpected change in the belief (because of the possibility of a
hange in the environment; cf. second and third lines in Eqs. (41)
nd (42)). Third, both definitions regularize the contributions of
hannon surprise and Bayesian surprise by the relative confi-
ence of the current belief compared to either the flat or the prior
elief (cf. the last line in Eqs. (41) and (42)). ‘Relative confidence’
uantifies how different the current belief is with respect to a
eference belief; note that C

[
π (t)

]
− C

[
πflat

]
= DKL

[
π (t)

||πflat
]
.

Hence, the Confidence Corrected surprise should be distin-
uishable from both the Shannon and the Bayesian surprise (for
c < 1). An interesting consequence of Proposition 9, however, is
hat SCC2 is identical to SBa2 when the environment becomes so
olatile that its parameter changes at each time step (i.e., in the
imit of pc → 1):

orollary 3. For the generative model of Definition 1, when pc →

, we have SCC2(yt+1|xt+1; π (t)) = SBa2(yt+1|xt+1; π (t)).

.4. Minimized free energy

Although an agent can perform computations over the joint
robability distribution in Eqs. (1) and (2), finding the belief
(t+1)(θ ) (i.e., the posterior distribution in Eq. (3)) can be compu-
ationally intractable (Barber, 2012; Liakoni et al., 2021). There-
ore, it has been argued that the brain uses approximate inference
instead of exact Bayesian inference) for finding the belief (Daw
Courville, 2008; Faraji et al., 2018; Findling et al., 2021; Fiser

t al., 2010; Friston, 2010; Friston et al., 2017; Liakoni et al., 2021;
athys et al., 2011). An approximation of the belief π (t+1)(θ ) can

or example be found via variational inference (Blei et al., 2017;
acKay, 2003) over a family of distributions q(θ; φ) parameter-

zed by φ. Such approaches are popular in neuroscience studies of
earning and inference in the brain (Friston, 2010; Friston et al.,
017; Gershman, 2019).
Formally, in variational inference, the belief π (t+1)(θ ) is ap-

roximated by π̂ (t+1)(θ ) := q(θ; φ(t+1)), where φ(t+1) is the
inimizer of the variational loss or free energy, i.e., φ(t+1)

:=

rgminφ F (t+1)(φ) (MacKay, 2003). To define F (t+1)(φ), we intro-
uce a new notation:

Θt+1

(
θ, yt+1|xt+1; π

)
:=

(y |x ; θ )
(
p π (0)(θ ) + (1 − p )π (θ )

)
,

(43)

Y |X t+1 t+1 c c
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Fig. 5. Taxonomy of surprise definitions. Measures of puzzlement surprise (Faraji et al., 2018) can be further classified into 3 sub-categories of surprise measures
ighlighting (i) prediction, (ii) change-point detection, and (iii) confidence correction. According to surprise measures focused on prediction, the agent’s puzzle is
inding the most accurate prediction of the next observation. According to surprise measures focused on change-point detection, the agent’s puzzle is to detect
nvironmental changes. Surprise measures focused on confidence correction do not determine a specific puzzle (change-point detection or accurate prediction,
isualized by overlapping boxes) for the agent but stress that confidence should explicitly influence puzzlement. The enlightenment surprise measures can be seen
s measures of information gain. In addition to the 18 definitions of surprise discussed in Section 3, we included in the figure the difference in Shannon surprise
∆Sh1 and ∆Sh2) introduced in Proposition 2. Color code shows the technical classification presented in Fig. 3.
here π is an arbitrary distribution over the parameter space. Us-
ng this notation, we can write the joint distribution over the ob-
ervation and the parameter P(t)

(
θ t+1, yt+1|xt+1

)
as

Θt+1

(
θ t+1, yt+1|xt+1; π (t)

)
and the updated belief π (t+1)(θ ) as

Θt+1

(
θ |yt+1, xt+1; π (t)

)
. The variational loss or free energy can

hen be defined as (Liakoni et al., 2021; Markovic et al., 2021;
ajid et al., 2021)

(t+1)(φ) := Eq(.;φ)

[
log q(Θ; φ)−

logPΘt+1

(
Θ, yt+1|xt+1; π̂ (t)) ]

.
(44)

For any value of φ, one can show that (Blei et al., 2017; Sajid et al.,
2021)

F (t+1)(φ) = SSh1(yt+1|xt+1; π̂ (t))+

DKL

[
q(.; φ)||PΘt+1

(
.|yt+1, xt+1; π̂ (t))]

≥ SSh1(yt+1|xt+1; π̂ (t)),

(45)

where the right side of the inequality is independent of φ, and
PΘt+1

(
.|yt+1, xt+1; π̂ (t)

)
is the exact Bayesian update of the belief

(according to the generative model in Definition 1) given the lat-
est approximation of the belief π̂ (t) (Liakoni et al., 2021; Markovic
et al., 2021).

The minimized free energy F∗
:= minφ F (t+1)(φ) has been

interpreted as a measure of surprise (Friston, 2010; Friston et al.,
2017; Schwartenbeck et al., 2013), which, according to Eq. (45),
can be seen as an approximation of SSh1(yt+1|xt+1; π̂ (t)). The
parametric family of q(.; φ) and its relation to the exact belief
π (t+1) determine how well F∗ approximates SSh1(yt+1|xt+1; π̂ (t))
(Fig. 4B). More precisely, the minimized free energy measures
both how unlikely the new observation is (i.e., how large
SSh1(yt+1|xt+1; π̂ (t)) is) and how imprecise the best parametric
approximation of the belief π̂ (t+1) is (i.e., how large DKL[π̂

(t+1)
||

PΘt+1

(
.|yt+1, xt+1; π̂ (t)

)
] is). Therefore, the minimized free energy

is in the category of belief-mismatch surprise measures (Fig. 3).

7. Taxonomy of surprise definitions

In a unified framework, we discussed 10 previously proposed
measures of surprise: (1) the Bayes Factor surprise; (2) the Shan-
non surprise; (3) the State Prediction Error; (4) the Absolute and
12
(5) the Squared error surprise; (6) the unsigned Reward Predic-
tion Error; (7) the Bayesian surprise; (8) the Postdictive surprise;
(9) the Confidence Corrected surprise; and (10) the Minimized
Free Energy. We considered different ways to define some of
these measures in volatile environments and, overall, analyzed
18 different definitions of surprise. In this section, we propose a
taxonomy of these 18 definitions and classify them into four main
categories regarding the semantic of what they quantify (Fig. 5).

Measures of surprise in neuroscience have been previously
divided into two categories (Faraji et al., 2018; Gijsen et al.,
2021; Hurley et al., 2011): ‘puzzlement’ and ‘enlightenment’ sur-
prise. Puzzlement surprise measures how puzzling a new obser-
vation is for an agent, whereas enlightenment surprise measures
how much the new observation has enlightened the agent and
changed its belief — a concept closely linked but not identical to
the ‘Aha! moment’ (Dubey et al., 2021; Kounios & Beeman, 2009).
The Bayesian and the Postdictive surprise can be categorized
as enlightenment surprise since both quantify information gain
(Fig. 5). Based on our theoretical analyses, however, we suggest
to further divide measures of puzzlement surprise into three
sub-categories (Fig. 5):

i. ‘Prediction surprise’ quantifies how unpredicted, unex-
pected, or unlikely the new observation is. This category includes
the Shannon surprise, State Prediction Error, the Minimized Free
Energy, and all observation-mismatch surprise measures (Fig. 5).
According to these measures, the agent’s puzzle is to find the
most accurate predictions of the next observations. Surprise in
natural language is defined as ‘the feeling or emotion excited by
something unexpected’ (Oxford-English-Dictionary, 2021). If we
focus on the term ‘unexpected’, identify it with ‘unlikely under
the current belief’, and neglect the terms ‘feeling’ and ‘emotion’,
then the quality measured by prediction surprise is closely related
to the definition of surprise in natural language.

ii. ‘Change-point detection surprise’ quantifies relative un-
likeliness of the new observation and are designed to modulate
the learning rate and to identify environmental changes. This
category includes the Bayes Factor surprise and the difference
in Shannon surprise (cf. Corollary 1; Fig. 5). According to these
measures, the agent’s puzzle is to detect environmental changes.

iii. ‘Confidence corrected surprise’ explicitly accounts for
the agent’s confidence. The idea is that higher confidence (or
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igher commitment to a belief) leads to more puzzlement, where
he puzzle is either to detect environmental changes or to find
he most accurate prediction. Faraji et al. (2018) argue, using a
hought experiment, that such an explicit account for confidence
s crucial to explain our perception of surprise. The only current
andidates of this category are SCC1 and SCC2 that assume that
the agent’s puzzle is to detect environmental changes (cf. Propo-
sition 9); but we anticipate that more examples in this category
might be found in the future (see Modirshanechi et al. (2021) for
example).

While our proposed taxonomy is solely conceptual and based
on the theoretical properties of different definitions, we note that
there have been a significant number of studies investigating the
neural and physiological correlates of prediction (Gijsen et al.,
2021; Gläscher et al., 2010; Kolossa et al., 2015; Konovalov &
Krajbich, 2018; Kopp & Lange, 2013; Loued-Khenissi & Preuschoff,
2020; Maheu et al., 2019; Mars et al., 2008; Meyniel, 2020;
Modirshanechi et al., 2019; Mousavi et al., 2022), change-point
detection (Liakoni et al., 2022; Nassar et al., 2012; Xu et al.,
2021), confidence correction (Gijsen et al., 2021), and information
gain (Gijsen et al., 2021; Kolossa et al., 2015; Nour et al., 2018;
O’Reilly et al., 2013; Ostwald et al., 2012; Visalli et al., 2021)
surprise measures (Fig. 1). We, therefore, speculate that at least
one measure from each of these categories is computed in the
brain but potentially through different neural pathways and to
be used for different brain functions.

8. Discussion

What does it formally mean to be surprised? And how do
existing definitions of surprise relate to each other? To address
these questions, we reviewed 18 definitions of surprise in a
unifying mathematical framework and studied their similarities
and differences. We showed that several extensions of known
surprise measures to volatile environments are possible and po-
tentially relevant; hence, further experimental evidence is needed
to elucidate the relevance of precise definitions of surprise for
brain research. Based on how different definitions depend on the
belief π (t), we divided them into three groups of probabilistic
mismatch, observation-mismatch, and belief-mismatch surprise
measures (Fig. 3). We then showed how these measures relate
to each other theoretically and, more importantly, under which
conditions they are strictly increasing functions of each other
(i.e., they become experimentally indistinguishable — Fig. 4 and
Table 2). We further proposed a taxonomy of surprise definitions
by a conceptual classification into four main categories (Fig. 5):
(i) prediction surprise, (ii) change-point detection surprise, (iii)
confidence-corrected surprise, and (iv) information gain surprise.

It is believed that surprise has important computational roles
in different brain functions such as adaptive learning (Gerst-
ner et al., 2018; Iigaya, 2016), exploration (Dubey & Griffiths,
2020; Gottlieb & Oudeyer, 2018), memory formation (Rouhani
& Niv, 2021), and memory segmentation (Antony et al., 2021).
Our results propose a diverse toolkit and a refined terminology
to theoreticians and computational scientist to model and discuss
the different functions of surprise and their biological implemen-
tation. For instance, it has been argued that the computation
of observation-mismatch surprise measures is biologically more
plausible than more abstract measures such as Shannon sur-
prise (Iigaya, 2016). Our results identify conditions under which
observation-mismatch surprise measures behave identically to
probabilistic mismatch surprise measures that are optimal for
adaptive learning (cf. Fig. 4B, Proposition 1, and Corollary 1); such
insights can be exploited in future network models of adaptive
behavior.

Moreover, our results can be used to design novel theory-
driven experiments where different measures of surprise make
13
different predictions. Importantly, most of the previous exper-
imental studies have focused on one measure of surprise and
its role and signatures in behavioral and physiological measure-
ments. The examples that considered more than one surprise
measure (Gijsen et al., 2021; Kolossa et al., 2015; Mars et al.,
2008; Mousavi et al., 2022; Ostwald et al., 2012) have mainly
focused on model-selection methods to compare different models
and did not look for fundamentally different predictions of these
measures — see Visalli et al. (2021) for an exception. Even if two
surprise measures are formally distinguishable, it may be that,
in a given experimental set-up, the number of samples or effect
size are not big enough to extract the quantitative differences
between the two. For example, SBF and SSh1 are distinguishable
for any prior marginal distributions other than uniform distribu-
tion (Fig. 4B), but, in practice, the distinction is hard to detect
for nearly-uniform priors. Our theoretical framework enables us
to go further and design experiments that enable to dissociate
different surprise measures based on their qualitatively different
predictions and to avoid experiments where different measures
are either formally or practically indistinguishable (see Modir-
shanechi et al. (2021) for example).
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Appendix. Proofs

In this appendix, we provide proofs for our Propositions and
Corollaries mentioned in the main text. We also provide further
results for the postdictive surprise in Lemma 1.

A.1. Proof of Proposition 1

The proof is in essence the same as the proof of Proposition 1
of Liakoni et al. (2021). We write

π (t+1)(θ ) = P(t+1)(Θ t+1 = θ )

=P(t+1)(Θ t+1 = θ |C t+1 = 0)P(t+1)(C t+1 = 0)+

P(t+1)(Θ t+1 = θ |C t+1 = 1)P(t+1)(C t+1 = 1).

(A.1)

We use Bayes’ rule and write P(t+1)(Θ t+1 = θ |C t+1 = 0) (cf. the
st term in Eq. (A.1)) as

P(t+1)(Θ t+1 = θ |C t+1 = 0)

P(t)(Θ t+1 = θ |C t+1 = 0, xt+1, yt+1)
P(t)(yt+1|C t+1 = 0, xt+1, Θ t+1 = θ )

P(t)(yt+1|C t+1 = 0, xt+1)
×

P(t)(Θ t+1 = θ |C t+1 = 0, xt+1)

=
PY |X (yt+1|xt+1; θ )π (t)(θ )

= π
(t+1)
integration(θ ),

(A.2)
P(yt+1|xt+1; π (t))
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nd similarly

(t+1)(Θ t+1 = θ |C t+1 = 1) =
PY |X (yt+1|xt+1; θ )π (0)(θ )

P(yt+1|xt+1; π (0))
= π

(t+1)
reset (θ ).

(A.3)

Then, for P(t+1)(C t+1 = 1) and P(t+1)(C t+1 = 0) = 1 −

P(t+1)(C t+1 = 1) we have

P(t+1)(C t+1 = 1)

= P(t)(C t+1 = 1|xt+1, yt+1)

=
pcP(yt+1|xt+1; π (0))

(1 − pc)P(yt+1|xt+1; π (t)) + pcP(yt+1|xt+1; π (0))

=
mSBF(yt+1|xt+1; π (t))

1 + mSBF(yt+1|xt+1; π (t))
= γ t+1

(A.4)

with m =
pc

1−pc
. Therefore, the proof is complete by substituting

hese terms in Eq. (A.1). ■

.2. Proof of Proposition 2

Based on the definition of the adaptation rate γ t+1 (cf. Propo-
ition 1), we have

SBF(yt+1|xt+1; π (t)) =
1 − pc
pc

γ t+1

1 − γ t+1
. (A.5)

or the difference in the 1st definition of the Shannon surprise
cf. Eq. (9)), we can write

∆SSh1(yt+1|xt+1; π (t))

= SSh1(yt+1|xt+1; π (t)) − SSh1(yt+1|xt+1; π (0))

= log
( P(yt+1|xt+1; π (0))
pcP(yt+1|xt+1; π (0)) + (1 − pc)P(yt+1|xt+1; π (t))

)
= log

γ t+1

pc
.

(A.6)

s a result, we have γ t+1 = pc exp∆SSh1(yt+1|xt+1; π (t)) and
hence

SBF(yt+1|xt+1; π (t))

=
(1 − pc) exp∆SSh1(yt+1|xt+1; π (t))
1 − pc exp∆SSh1(yt+1|xt+1; π (t))

.
(A.7)

he proof is more straightforward for the difference in the 2nd
efinition (cf. Eq. (11)) where we have

SSh2(yt+1|xt+1; π (t))

= SSh2(yt+1|xt+1; π (t)) − SSh2(yt+1|xt+1; π (0))

= log
(P(yt+1|xt+1; π (0))
P(yt+1|xt+1; π (t))

)
= log SBF(yt+1|xt+1; π (t)).

(A.8)

herefore, the proof is complete. ■

.3. Proof of Proposition 3

Based on the definitions of the two versions of the Shannon
surprise (cf. Eqs. (9) and (11)), we have

P(t)(yt+1|xt+1
)

= exp
(
−SSh1(yt+1|xt+1; π (t))

)
,

P(yt+1|xt+1; π (t)) = exp
(
−SSh2(yt+1|xt+1; π (t))

)
.

(A.9)

The proof is complete by using these equations and replacing the
probabilities in Eqs. (15) and (16). ■
14
A.4. Proof of Proposition 4

For a categorical task with N categories and one-hot coded
observations, we have (cf. Eqs. (18) and (19))

E1[Y t+1] =

[
pcP(n|xt+1; π (0)) + (1 − pc)P(n|xt+1; π (t))

]
N
n=1

E2[Y t+1] =

[
P(n|xt+1; π (t))

]
N
n=1

(A.10)

here z = [zn]Nn=1 is an N-dimensional vector with zn the nth
lement. To be able to prove the proposition for E1[Y t+1] and
2[Y t+1] simultaneously, we define Ei[Y t+1] = [pi,n]Nn=1, where
1,n = pcP(n|xt+1; π (0)) + (1 − pc)P(n|xt+1; π (t)) and p2,n =

(n|xt+1; π (t)).
We show the one-hot coded vector corresponding to category
∈ {1, . . . ,N} by em. For the absolute error surprise, we have

cf. Eq. (20))

SAbi(yt+1 = em|xt+1; π (t)) =

N∑
n=1

|δm,n − pi,n|

= |1 − pi,m| +

N∑
n=1,n̸=m

pi,n = 2(1 − pi,m),

(A.11)

hich is the same as 2SSPEi(yt+1 = em|xt+1; π (t)) (cf. Eqs. (15) and
16)).

For the squared error surprise, we have (cf. Eq. (20))

Sqi(yt+1 = em|xt+1; π (t)) =

N∑
n=1

(δm,n − pi,n)2

= (1 − pi,m)2 +

N∑
n=1,n̸=m

p2i,n

= 2(1 − pi,m) + ∥[pi,n]Nn=1∥
2
2 − 1,

(A.12)

where we have 2(1 − pi,m) = 2SSPEi(yt+1 = em|xt+1; π (t)) and

Conf.
[
P(.|xt+1; π (t))

]
= ∥[pi,n]Nn=1∥

2
2 − 1 (A.13)

hows the ℓ2-norm of the estimate vector [pi,n]Nn=1 as a measure
f confidence; ∥[pi,n]Nn=1∥

2
2 takes its maximum value when the

prediction has a probability of 1 for one category and zero for
the rest and takes its minimum when it is distributed uniformly
over all categories. Therefore, the proof is complete. ■

A.5. Proof of Proposition 5

Assume that Y t+1 ∈ RN , given the cue xt+1 and the belief π (t),
has a Gaussian distribution with a covariance matrix σ 2I , i.e.,

P(yt+1|xt+1; π (t)) = N
(
yt+1; E2[Y t+1], σ I

)
. (A.14)

e then have

SSh2(yt+1|xt+1; π (t)) = − logN
(
yt+1; E2[Y t+1], σ I

)
=

N
2

log
(
2πσ

)
+

∥yt+1 − E2[Y t+1]∥
2
2

2σ 2

= a + bSSq,2(yt+1 = em|xt+1; π (t)),

(A.15)

here a = N log
(
2πσ

)
/2 and b = 1/(2σ 2). Therefore, the proof

is complete. ■
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.6. Proof of Proposition 6

Using the definition of the two surprise measures in Eq. (20),
we have, for yt+1 ∈ R,

SSqi(yt+1|xt+1; π (t)) = ∥yt+1 − Ei[Y t+1]∥
2
2

= |yt+1 − Ei[Y t+1]|
2

= SAbi(yt+1|xt+1; π (t))2.
(A.16)

Therefore, the proof is complete. ■

A.7. Proof of Proposition 7

Using the definition of the uRPE and the absolute error sur-
prise in Eqs. (20) and (25), we have

SAbi(yt+1|xt+1; π (t)) = ∥yt+1 − Ei[Y t+1]∥1

= |r̃ t+1 − Ei[R̃t+1]| + ∥st+1 − Ei[St+1]∥1

= SuRPEi(yt+1|xt+1; π (t)) + SAbi(st+1|xt+1; π (t)),

(A.17)

which complete the proof for the absolute error surprise. Then,
we can similarly write

SSqi(yt+1|xt+1; π (t)) = ∥yt+1 − Ei[Y t+1]∥
2
2

= |r̃ t+1 − Ei[R̃t+1]|
2
+ ∥st+1 − Ei[St+1]∥

2
2

= SuRPEi(yt+1|xt+1; π (t))2 + SSqi(st+1|xt+1; π (t)).

(A.18)

herefore, the proof is complete. ■

.8. Proof of Proposition 8

For the 1st definition of the Bayesian surprise (cf. Eq. (29)), we
ave

SBa1(yt+1|xt+1; π (t)) = DKL

[
P(t)

Θt+1
||P(t+1)

Θt+1

]
= EP(t)

[
log

P(t)
(
Θ t+1

)
P(t+1)

(
Θ t+1

)]
.

(A.19)

e know

P(t)
Θt+1

= pcπ (0)
+ (1 − pc)π (t), (A.20)

nd

P(t+1)(θ t+1
)

=
P(t)

(
θ t+1

)
PY |X

(
yt+1|xt+1; θ t+1

)
P(t)

(
yt+1|xt+1

)
⇒

P(t+1)
(
θ t+1

)
P(t)

(
θ t+1

) =
PY |X

(
yt+1|xt+1; θ t+1

)
P(t)

(
yt+1|xt+1

) .

(A.21)

We, therefore, have

SBa1(yt+1|xt+1; π (t)) = −pcEπ (0)

[
log PY |X (yt+1|xt+1; Θ)

]
− (1 − pc)Eπ (t)

[
log PY |X (yt+1|xt+1; Θ)

]
+ logP(t)(yt+1|xt+1

)
,

(A.22)

which is equivalent to (cf. Eqs. (9) and (11))

SBa1(yt+1|xt+1;π
(t)) = pcEπ (0)

[
SSh2(yt+1|xt+1; δ{Θ})

]
+ (1 − pc)Eπ (t)

[
SSh2(yt+1|xt+1; δ{Θ})

]
− SSh1(yt+1|xt+1; π (t)).

(A.23)

For the 2nd definition of the Bayesian surprise (cf. Eq. (30)), we
have

SBa2(yt+1|xt+1; π (t)) = DKL

[
π (t)

||π (t+1)
]

= Eπ (t)

[
log

π (t)
(
Θ

)
(t+1)

( )]
.

(A.24)
π Θ
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We use Eqs. (28) and (A.21) and write

SBa2(yt+1|xt+1; π (t)) = −Eπ (t)

[
log PY |X (yt+1|xt+1; Θ)

]
+ logP(t)(yt+1|xt+1

)
+ Eπ (t)

[
log

π (t)
(
Θ

)
pcπ (0)

(
Θ

)
+ (1 − pc)π (t)

(
Θ

)]
,

(A.25)

hich is equivalent to (cf. Eqs. (9) and (11))

Ba2(yt+1|xt+1; π (t)) = Eπ (t)

[
SSh2(yt+1|xt+1; δ{Θ})

]
− SSh1(yt+1|xt+1; π (t))

+ DKL

[
π (t)

||pcπ (0)
+ (1 − pc)π (t)

]
.

(A.26)

herefore, the proof is complete. ■

.9. Proof of Proposition 9

First, we prove the statement for the 2nd definition of the
onfidence Corrected surprise (cf. Eq. (40)) for which we have

SCC2(yt+1|xt+1; π (t)) = DKL

[
π (t)

||π
(t+1)
reset

]
= Eπ (t)

[
log

π (t)
(
Θ

)
π

(t+1)
reset

(
Θ

)]
.

(A.27)

sing the definition of π
(t+1)
reset in Proposition 1, we can write

SCC2(yt+1|xt+1; π (t)) = − Eπ (t)

[
log PY |X (yt+1|xt+1; Θ)

]
+ log P

(
yt+1|xt+1; π (0))

+ Eπ (t)

[
log

π (t)
(
Θ

)
π (0)

(
Θ

)]
,

(A.28)

hich is equivalent to (cf. Eqs. (9) and (11))

SCC2(yt+1|xt+1; π (t)) =Eπ (t)

[
SSh2(yt+1|xt+1; δ{Θ})

]
− SSh1(yt+1|xt+1; π (0))

+ DKL

[
π (t)

||π (0)
]
.

(A.29)

ow, we can replace Eπ (t)

[
SSh2(yt+1|xt+1; δ{Θ})

]
by using

q. (A.26) and have

SCC2(yt+1|xt+1; π (t)) = SSh1(yt+1|xt+1; π (t))

− SSh1(yt+1|xt+1; π (0))

+ SBa2(yt+1|xt+1; π (t))

− DKL

[
π (t)

||pcπ (0)
+ (1 − pc)π (t)

]
+ DKL

[
π (t)

||π (0)
]
,

(A.30)

hich is the same as Eq. (42). For the 1st definition of the
onfidence Corrected surprise (cf. Eq. (37)), we can repeat all
teps to have

SCC1(yt+1|xt+1; π (t)) = SSh1(yt+1|xt+1; π (t))
− SSh1(yt+1|xt+1; πflat)

+ SBa2(yt+1|xt+1; π (t))

− DKL

[
π (t)

||pcπ (0)
+ (1 − pc)π (t)

]
+ DKL

[
π (t)

||πflat

]
.

(A.31)

f π (t) is absolutely continuous with respect to πflat, then we
ave DKL

[
π (t)

||πflat

]
= C

[
π (t)

]
− C

[
πflat

]
, which completes the

roof. ■
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.10. Proof of Corollary 1

The corollary is the direct conclusion of Eqs. (A.6) and
A.8). ■

A.11. Proof of Corollary 2

Let us show the set of possible observations by Y . We assume
that Y is bounded, i.e., |Y| < ∞. By assumption, we have
P(yt+1|xt+1; π (0)) = 1/|Y|. We therefore (using Eq. (5), Eq. (9),
nd Eq. (11)) have

SSh1(yt+1|xt+1; π (t))

= log
mSBF(yt+1|xt+1; π (t))

1 + mSBF(yt+1|xt+1; π (t))
+ log

|Y|

pc
,

SSh2(yt+1|xt+1; π (t)) = log SBF(yt+1|xt+1; π (t)) + log |Y|.

(A.32)

Both mappings are strictly increasing. Therefore, the proof is
complete. ■

A.12. Proof of Corollary 3

In the limit of pc → 1, we have SSh1(yt+1|xt+1; π (t)) =

SSh1(yt+1|xt+1; π (0)) (cf. Eq. (9)) which implies that
∆SSh1(yt+1|xt+1; π (t)) (cf. Proposition 2) in Eq. (42) is equal to
0. Similarly, in the limit of pc → 1, we have DKL

[
π (t)

||pcπ (0)
+

(1 − pc)π (t)
]

= DKL

[
π (t)

||π (0)
]
. Therefore, in the limit of pc → 1

and given Eq. (42), we have SCC2(yt+1|xt+1; π (t)) = SBa2(yt+1|xt+1;
(t)). ■

.13. Theoretical results for the postdictive surprise

emma 1 (Relation Between the Postdictive Surprise and the Shan-
on Surprise). In the generative model of Definition 1, the postdictive
urprise can be written as

Po1(yt+1|xt+1; π (t))

= E
P
(
.|xt+1;P(t)Θt+1

)[SSh2

(
yt+1|xt+1;P

(t)
Θt+1|Y ,xt+1

)]
− SSh1(yt+1|xt+1; π (t))

(A.33)

nd

Po2(yt+1|xt+1; π (t))

= E
P
(
.|xt+1;π (t)

)[SSh2

(
yt+1|xt+1;P

(t)
Θt+1|Y ,xt+1

)]
− SSh1(yt+1|xt+1; π (t))

+ DKL

[
P
(
.|xt+1; π (t))

||P
(
.|xt+1;P

(t)
Θt+1

)]
,

(A.34)

where P(t)
Θt+1|y,xt+1

:= P(t)
Θt+1

(
.|Y t+1 = y, xt+1

)
is the belief at time

+ 1 if we observe Y t+1 = y with the cue xt+1.

According to Lemma 1, the postdictive surprise is equal to the
ifference between the expected (over all values of Y t+1) Shannon
urprise of Y t+2 = yt+1 given X t+2 = xt+1 and the Shannon
urprise of yt+1 given xt+1.

roof. We first prove the equality for SPo1 for which we have (cf.
q. (34))

Po1(yt+1|xt+1; π (t))

= DKL

[
P
(
.|xt+1;P

(t)
Θt+1

)
||P

(
.|xt+1; π (t+1))]

= E
P
(
.|x ;P(t)

)[log P
(
Y |xt+1;P

(t)
Θt+1

)(
(t+1)

)]
,

(A.35)
t+1 Θt+1 P Y |xt+1; π

16
where

P
(
y|xt+1;P

(t)
Θt+1

)
=

∫
PY |X (y|xt; θ )P(t)(Θ t+1 = θ

)
dθ, (A.36)

and, using Bayes’ rule,

P
(
y|xt+1; π (t+1))

=

∫
PY |X (y|xt+1; θ )π (t+1)(θ )dθ

=

∫
PY |X (y|xt+1; θ )

P(t)
(
Θ t+1 = θ

)
PY |X (yt+1|xt+1; θ )

P
(
yt+1|xt+1;P

(t)
Θt+1

) dθ.

(A.37)

sing the Bayes’ rule and the definition of the marginal probabil-
ty (cf. Eq. (4)), we can find

P
(
y|xt+1; π (t+1)

)
P
(
y|xt+1;P

(t)
Θt+1

) =
1

P
(
yt+1|xt+1;P

(t)
Θt+1

)
×

∫
PY |X (yt+1|xt+1; θ )

P(t)
(
Θ t+1 = θ

)
PY |X (y|xt+1; θ )

P
(
y|xt+1;P

(t)
Θt+1

) dθ

(A.38)

hat is equal to∫
PY |X (yt+1|xt+1; θ )P(t)

(
Θ t+1 = θ |Y t+1 = y, xt+1

)
dθ

P
(
yt+1|xt+1;P

(t)
Θt+1

)
=

∫
PY |X (yt+1|xt+1; θ )P(t)

Θt+1|y,xt+1
(θ )dθ

P
(
yt+1|xt+1;P

(t)
Θt+1

)
=

P
(
yt+1|xt+1;P

(t)
Θt+1|y,xt+1

)
P
(
yt+1|xt+1;P

(t)
Θt+1

) ,

(A.39)

nd as a result (using Eqs. (9) and (11))

log
P
(
y|xt+1;P

(t)
Θt+1

)
P
(
y|xt+1; π (t+1)

)
= − log P

(
yt+1|xt+1;P

(t)
Θt+1|y,xt+1

)
+ log P

(
yt+1|xt+1;P

(t)
Θt+1

)
=SSh2

(
yt+1|xt+1;P

(t)
Θt+1|y,xt+1

)
− SSh1(yt+1|xt+1; π (t)),

(A.40)

hich, using Eq. (A.35), makes the proof complete.

To prove the 2nd equality, we note that (cf. Eq. (35))

SPo2(yt+1|xt+1; π (t))

= DKL

[
P
(
.|xt+1; π (t))

||P
(
.|xt+1; π (t+1))]

= E
P
(
.|xt+1;π (t)

)[log P
(
Y |xt+1; π (t)

)
P
(
Y |xt+1; π (t+1)

)]
,

(A.41)

nd

log
P
(
y|xt+1; π (t)

)
P
(
y|xt+1; π (t+1)

) =

log
P
(
y|xt+1;P

(t)
Θt+1

)
P
(
y|xt+1; π (t+1)

) + log
P
(
y|xt+1; π (t)

)
P
(
y|xt+1;P

(t)
Θt+1

) .

(A.42)

herefore, using Eq. (A.40) and the definition of DKL, the proof is
omplete. ■
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