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Abstract

Memory consolidation involves a process of engram reorganization and stabiliza-

tion that is thought to occur primarily during sleep through a combination of

neural replay, homeostatic plasticity, synaptic maturation, and pruning. From

a computational perspective, however, this process remains puzzling, as it is

unclear how the underlying mechanisms can be incorporated into a common

mathematical model of learning and memory. Here, we propose a solution by

deriving a consolidation model that uses replay and two-factor synapses to store

memories in recurrent neural networks with sparse connectivity and maximal

noise robustness. The model o↵ers a unified account of experimental observa-

tions of consolidation, such as multiplicative homeostatic scaling, task-driven

synaptic pruning, increased neural stimulus selectivity, and preferential strength-

ening of weak memories. The model further predicts that intrinsic synaptic noise

scales sublinearly with synaptic strength; this is supported by a meta-analysis of

published synaptic imaging datasets.

Keywords: associative memory, long-term memory, artificial neural networks,
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1 Introduction1

The ability to store and retrieve remote memory is thought to rely on a distributed2

network of neurons located primarily in the cortical areas of the brain [1–4]. This view3

is supported by anatomical studies, showing that cortical circuits are highly recurrent4

and, thus, particularly conducive to information storage [5–7]. In an e↵ort to unify5

these findings, models of long-term memory are today often based on the concept of6

attractor networks [8]. The basic idea of this approach is to represent local cortical7

circuits with a recurrent neural network, in which each memory corresponds to a8

distinct pattern of activity that acts as an attractor of the network’s dynamics [9, 10].9

In this context, memory encoding is modeled by configuring the connections of10

the network to imprint activity patterns as stable attractors. When this is done opti-11

mally, memory storage is saturated and the network reaches critical capacity [11, 12].12

This state is particularly significant. In a series of recent studies, attractor networks13

operating close to critical capacity have been shown to mimic several dynamical and14

structural motifs observed in cortical circuits, thereby suggesting that optimal storage15

is an organizing principle of cortical connectivity [13–16]. However, it is unclear how16

such optimality can emerge in biology, and the precise role of synaptic plasticity in17

this process remains unknown.18
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Fig. 1 General model schematics. (a) Diagram of the circuit model. We consider a recurrent
network of binary, excitatory neurons (gray) with non-negative connection weights, receiving a neuron-
specific, scalar inhibitory input (blue). (b) Diagram of the synapse model. The total connection weight
wij is a product of z factors uij1, . . . , uijz that represent the e�cacy of sub-synaptic components, e.g.,
release probability (blue), receptor density (green) and sca↵olding protein content (brown, orange). (c)
Illustration of input current dynamics during idleness (white background) and recall (pink background)
in a single neuron. The SNR during recall of a pattern is determined by the deflection of the mean
input current from threshold, relative to the fluctuations caused by noisy a↵erent neurons or synapses.
(d) The noise scaling exponent q as a function of z for neural and synaptic noise. Consolidation with z
components maximizes robustness with respect to noise of type q = 2/z, which is equivalent to neural
noise when z = 1, and synaptic noise when z = 2.

In the experimental literature, the process whereby memories are stabilized and19

reshaped for long-term storage is generally referred to as consolidation. This takes20

place mainly during sleep [17] and is believed to be e↵ected by a combination of neuro-21

physiological mechanisms: Shortly after an initial episode of learning, cortical circuits22

undergo early tagging [18] and an immature engram is formed [19]. This is accom-23

panied by a rapid growth of new dendritic spines [20, 21]. During sleep, the cortical24

engram is stabilized by replaying past neural activity [22–24] while task-irrelevant25

connections are pruned [21, 25, 26]. At the same time, surviving synaptic connections26

are collectively scaled down [27–29] in order to maintain firing rate homeostasis [30].27

Notably, this regulation is multiplicative and, thus, preserves the relative di↵erences28

between synapses [31].29

Many of these aspects are neglected in standard attractor network models.30

Although phenomenological models have demonstrated that isolated aspects of con-31

solidation, such as replay [32, 33], pruning [34], and homeostasis [35, 36], are beneficial32

for memory and learning, a principled account of the consolidation process within a33

common theoretical framework is lacking.34

Here, we derive a normative synaptic plasticity model that reconciles the various35

biological mechanisms of consolidation with the notion of critical capacity in attractor36

networks. Our derivation is fundamentally based on a reformulation of the problem of37

critical capacity in two ways: First, instead of considering optimality to be a maximiza-38

tion of storage capacity [13–16], we define it as a maximization of memory robustness.39

Second, we assume that synapses are products of multiple sub-synaptic components40

which form the expression sites for synaptic plasticity [36–39]. The result is a self-41

supervised plasticity model that uses a combination of replay, homeostatic scaling42
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and Hebbian plasticity to prune connections and shape the network to perform noise-43

tolerant memory recall. The model o↵ers a simple explanation for a wide range of44

putative consolidation e↵ects observed in synaptic, neural, and behavioral data.45

2 Results46

2.1 The circuit and synapse model47

We model a local circuit of cortical pyramidal cells using a recurrent network of N48

excitatory binary neurons (Fig. 1a). At every discrete time step t, each neuron i =49

1, . . . , N is characterized by an output state si(t), which represents a brief period of50

elevated (si = 1) or suppressed firing (si = 0), similar to “up” and “down” states51

[40]. The elevated state (si = 1) occurs only if the neuron’s total input current Ii(t)52

exceeds zero. This input current evolves in time according to53

Ii(t+ 1) =
NX

j=1

wijsj(t)� Iinh,i(t) (1)

where the first term corresponds to the excitatory synaptic input from all neighboring54

neurons, with wij � 0 denoting the connection strength from neuron j to i, while the55

second term summarizes the net e↵ect of inhibitory inputs (see Methods 4.1).56

In our mathematical analysis of the storage properties of the network, we focus57

on the connection strengths wij . We begin by noting that the functional strength of a58

biological synapse (measured, for instance, as the amplitude of the excitatory postsy-59

naptic potential, EPSP) is an aggregate quantity that is determined by the interaction60

of several protein complexes that combine to form the internal synaptic structure [41].61

Following the induction of long-term plasticity, structural and chemical changes cas-62

cade throughout this molecular interaction network, causing the concentration and63

configuration of each component to be altered over the course of seconds to minutes64

[42]. This ultimately increases or decreases the synapse’s functional strength.65

We model this internal synaptic structure by expressing each weight wij as the66

product of z internal, sub-synaptic components (factors) uijk, where k = 1, . . . , z, so67

that68

wij =
zY

k=1

uijk . (2)

Each variable uijk can be seen as the relative concentration of a collection of one or69

more subcellular building-blocks that are necessary to form a functional connection,70

for instance, the average concentration of released neurotransmitters or the density of71

post-synaptic receptors and sca↵old proteins (Fig. 1b; see Methods 4.2). Furthermore,72

consistent with the tagging-and-capture property [43, 44], we consider one of the73

synaptic components (uij1) to be a flexible plasticity tag that is more volatile and74

sensitive to noise, while the remaining z � 1 components are governed by more stable75

processes that are active only during consolidation.76

2.2 Consolidation with homeostatic scaling, synaptic pruning,77

and replay78

We define consolidation as the process of optimally storing a set of M memories,79

where each memory corresponds to a pattern of stationary network activity in which a80

specific group of neurons is active, while the rest is silent. The desired output of neuron81

i in pattern µ = 1, . . . ,M is defined by ⇠
µ
i , which is one with probability f  0.5 and82

zero otherwise. We parameterize the storage load using the ratio ↵ = M/N (where ↵c83

denotes the highest possible load).84

Prior to consolidation, the network is assumed to have undergone an initial episode85

of learning that has imprinted all patterns as stable attractors, albeit with suboptimal86

robustness. At this stage, patterns can only be recalled if the network operates with87

3

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 24, 2024. ; https://doi.org/10.1101/2024.07.23.604787doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.23.604787
http://creativecommons.org/licenses/by/4.0/


1 2 3 4
z

0.0

0.2

0.4

0.6

M
ax

 n
oi

se
 (σ

no
is

e
/�
u�

ob
s) α/αc

0.08
0.14
0.33

-2 -1
log(u1)

-2

-1

lo
g(
u 2
) Before

After

Repeat for
µ=3,…, M

Update network,
add plasticity signal

0.1 0.3 0.5 0.7
Storage load α/αc

1

10

SN
R

σnoise�
u
�
obs

= 0.2

0.1 0.3 0.5 0.7
Storage load α/αc

1

10

SN
R

fnoise
f = 0.03

0.1 0.3 0.5 0.7
Storage load α/αc

0.0

0.1

0.2

0.3

0.4

0.5

C
on
ne
ct
io
n 
de

ns
ity

No
sol tions

Cortex

Sim lation
z=1
z=2
z=3
z=4

Theory
z=1
z=2
z�∞

1 2 3 4
z

0.0

0.1

0.2

0.3

0.4

0.5

M
ax

 n
oi

se
 (f

no
is

e
/f)

α/αc
0.08
0.14
0.33

-3 -2 -1 0
log(w)

0

2

4

C
ou

nt
 (×

10
4 ) α /αc =0.33

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
z

0

1

SN
R

q=2 q=1 q=2/3 q=1/2a d e

h

Noise
Noise

Neural noise Synaptic noiseg j

Cue pattern 
µ=1 

Update network,
add plasticity signal

Cue pattern 
µ=2 

Update weightsScale weights

Input
current

g
Plasticity inductionb

c f

i

Σμ |g|

G

Plasticity expression

Fig. 2 Simulated consolidation in networks with multi-factor synapses. (a) Diagram of
one replay cycle of the consolidation model, implemented in discrete time. (b) The gating function gi.
This determines the amplitude and sign of plasticity induction after replay of a single pattern. (c) The
learning rate Gi. This determines the amount of plasticity expression after a full replay cycle and depends
on the accumulated signal

P
µ |gi|. (d) SNR (mean over 103 neurons) for di↵erent combinations of noise

scaling q and components z, at ↵/↵c = .08. Weights are normalized to
P

j w
q
ij = 1, and the maximal

SNR, for a given q, is scaled to one. (e) Connection density. Circles represent simulations (mean over
103 neurons) while dashed lines represent theoretical solutions (Suppl. Note S.2). The light gray area
marks the connection probability (mean ± SEM) among cortical pyramidal cells in a meta-analysis of
124 experimental datasets from mice, rats, cats, and ferrets [16] (Methods 4.12). (f) Left: distribution of
weights (mean normalized to 0.1, colors as in e). Right: the second synaptic components (uij2) plotted as
a function of the first (uij1) in a simulated neuron with z = 2, at ↵/↵c = .33. (g) Illustration of neural
noise. Each row of boxes represents binary input patterns at discrete time steps (gray = noise-free; red =
distorted). (h) Left: SNR with respect to neural noise (q = 2; the noise level is parameterized by fnoise;
Methods 4.5). Right: highest level of tolerated neural noise in tests of pattern recall (Methods 4.7). (i)
Illustration of synaptic noise, which directly perturbs synaptic strengths. (j) Left: SNR with respect to
synaptic noise (q = 2� 2/z; the noise level is parameterized by �noise). Right: highest level of tolerated
synaptic noise in tests of pattern recall. All results in this figure are produced with f = 0.5, but there is
no qualitative change with low-activity patterns (Suppl. Fig. S1).

very low levels of noise. The purpose of consolidation is now to tune all connections so88

as to maximize robustness and allow patterns to be successfully recalled under much89

noisier conditions.90

We define robustness as the largest amount of noise that can be tolerated by the91

neural population before an error occurs during recall (Fig. 1c). This is determined by92

the signal-to-noise ratio (SNR) of the weakest pattern. We can optimize this by letting93

each neuron independently maximize a neuron-specific SNR where the signal is the94

amplitude of the input current deflection at the time the weakest pattern is recalled95

(see Methods 4.4). We write this as minµ |Iµi | = minµ |
PN

j wij⇠
µ
j � Iinh,i|.96

The noise is determined by the magnitude of random fluctuations in the input97

current. This, however, varies depending on the noise source. Here, we expand on98

a previous analysis [45] and distinguish between two types of noise: neural noise99

and synaptic noise. Neural noise refers to perturbations of the network state (the100

s-variables) caused either by the encounter of distorted stimuli or by faulty neural101

output activity (i.e., firing below the threshold or failing to fire above the threshold).102

Synaptic noise, on the other hand, refers to perturbations in the connectivity, that, for103

example, are produced by spontaneous chemical reactions, conformational changes,104

or protein degradation and turnover [46, 47]. We model these perturbations as white105

noise added to the volatile u-component in each connection (see Methods 4.5).106
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Input fluctuations caused by neural noise scale as O(
qP

j w
2
ij), and are therefore107

dependent on synaptic weight but independent of synaptic structure. The magnitude108

of synaptic noise, however, depends both on synaptic weight and synaptic structure,109

by scaling as O(
qP

j w
2�2/z
ij ) (see Methods 4.5). We can therefore write the SNR as110

SNR / minµ |Iµi |qP
j w

q
ij

(3)

where we introduce a scaling exponent q which takes the value q = 2 for neural noise111

and q = 2� 2/z for synaptic noise (Fig. 1d). The SNR can, in principle, be optimized112

(up to an arbitrary scaling factor) by any consolidation process that (a) maximizes113

the signal and (b) maintains a constant synaptic “mass”
P

j w
q
ij . The latter property,114

however, necessitates a homeostatic weight regulation that is inhomogeneous across115

weights and, as such, directly at odds with the multiplicative homeostatic plasticity116

that has been observed experimentally [31] (see Suppl. Note S.1.3). We resolve this117

issue by optimizing the SNR in terms of each neuron’s sub-synaptic components uijk,118

instead of directly treating the whole weight wij (see Methods 4.6). The result is the119

following three-step process (Fig. 2a):120

(i) Plasticity induction: All patterns are replayed. For each pattern µ, the network121

receives a cue and is updated (Eq. 1) so that recall occurs. This triggers a122

plasticity signal �uµ
ijk = gi(I

µ
i )sj

wij

uijk
, which is accumulated by the neuron. The123

gi-function is a neuron-specific, input-dependent plasticity gate that determines124

the sign and amplitude of induced plasticity (Fig. 2b; see Suppl. Note S.1.4).125

(ii) Plasticity expression: Once all patterns have been replayed, the accumulated126

plasticity signal is expressed by updating each component uijk with the incre-127

ment �uijk = Gi
P

µ �u
µ
ijk, where Gi is a neuron-specific learning rate that is128

regulated so that the amount of expression is the same in each cycle (Fig. 2c;129

see Methods 4.6). Note that the fraction wij/uijk implies that components that130

constitute a small part of their connection are more plastic, and vice versa.131

(iii) Homeostatic scaling : All uijk are scaled by a normalization factor, and the132

process starts over.133

This consolidation model possesses a number of noteworthy mathematical properties:134

First, it is self-supervised, and requires no explicit error or target signal, as the target135

is provided by the response of the neurons themselves. Second, it maximizes the SNR136

with respect to noise with scaling exponent q = 2/z (Figs. 1d, 2d). Third, it is equiva-137

lent to L2/z-regularized optimization (see Methods 4.6), which means that a network138

with more sub-synaptic components prunes a larger fraction of its weights (Fig. 2e,f),139

despite the fact that homeostatic regulation always is multiplicative (regardless of z).140

Consequently, only networks with multi-factor synapses (z � 2) reach a connection141

probability comparable to that measured in cortex (Fig. 2e). Fourth, the model forces142

components within a synapse to align with each other, so that uij1 = uij2 = . . . = uijz143

(Fig. 2f). All components therefore end up highly correlated with the total connection144

strength wij , consistent with experimental findings [48, 49].145

Networks with two-factor synapses (z = 2) are particularly important. While con-146

solidation with z = 1 maximizes memory robustness with respect to neural noise (Fig.147

2g,h), consolidation with z = 2 maximizes robustness with respect to synaptic noise148

(Fig. 2i,j). In practice, this means that two-factor consolidation generates networks149

that are highly pruned yet at least as robust to synaptic noise as the densest networks150

(Fig. 2j). From a neurophysiological perspective, these results are significant. When151

z = 2, we can describe the dynamics of the weights, close to convergence, with the152

5
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di↵erential equation153

dwij

dt
/
h

h
�X

j

wij

�

| {z }
homeostatic scaling

+ Gi(t)
X

µ

gi

�
I
µ
i

�
⇠
µ
j

| {z }
replay-induced LTP/LTD

i
· wij (4)

where h(x) is a general homeostatic function that is negative when x exceeds a baseline,154

and positive otherwise. All weight changes are now multiplicative, i.e., proportional to155

the momentary value of wij . The homeostatic part, more specifically, performs a mul-156

tiplicative L1-regularization that both prunes a large fraction of the connections and157

scales the remaining ones to maintain a constant average strength. This, by extension,158

keeps the average input current constant as well (assuming a stable level of output159

activity in the network). The formulation in Eq. 4 is directly compatible with, and160

generalizes, previously proposed models of homeostatic plasticity [35, 36] (Suppl. Note161

S.1.5).162

Note that our consolidation model is entirely derived from normative assumptions.163

This is equally true for the synapse model in Eq. 2, which originates from a parameter-164

ization technique that implicitly biases an optimizer to find sparse solutions [50, 51].165

Ablating either the sub-synaptic structure or the homeostatic scaling causes the model166

to fail (Suppl. Fig. S3).167

2.3 Signs of consolidation in synaptic, neural, and behavioral168

data169

In order to demonstrate how the consolidation algorithm can be incorporated into a170

single, self-supervised model of memory formation and stabilization, we simulate a171

network with two-factor synapses that optimally stores patterns across two phases of172

learning.173

In the first phase, representing wakefulness, the network starts fully connected and174

sequentially encounters external stimulus patterns that are imprinted as attractors175

using few-shot learning (see Methods 4.9). This leaves the network densely connected176

and sensitive to noise (Fig. 3a). In the second phase, the network undergoes consoli-177

dation, rendering the connectivity sparse and robust (Fig. 3b; see Suppl. Fig. S4 for178

details). This process represents the cumulative e↵ect of multiple sleep sessions taking179

place over an extended period of time.180

The simulation qualitatively reproduces a wide range of experimental observations181

linked to long-term plasticity (Fig. 3c-i; note, however, that simulated e↵ects gener-182

ally are more amplified, as we model a long stretch of biological time with a single183

bout of optimal consolidation). On the synaptic level, simulated wakefulness produces184

relatively small weight perturbations, while sleep entails more extensive rewiring. The185

distribution of pre-sleep weights therefore closely overlaps with the distribution of186

pruned weights (Fig. 3c, left), while surviving weights generally are stronger. We find187

analogous results in experimental data [52] (Fig. 3c, right). The distribution of den-188

dritic spine volume for young spines (age  4 d) is statistically indistinguishable from189

that of pruned spines, while old spines (age> 4 d) are significantly larger (Kolmogorov-190

Smirnov tests, Ppruned = 0.61, Pold = 8.6 ⇥ 10�190, nyoung = 2268, npruned = 2300,191

nold = 5011). This e↵ect cannot be produced with single-factor synapses (Suppl. Fig.192

S5a).193

An analysis of individual weight trajectories reveals that the probability of pruning194

decreases as a function of strength, meaning that connections that are potentiated195

prior to consolidation have higher chances of surviving (Fig. 3d, left). This trend is,196

again, present and highly significant in the experimental data [52] (logistic regression197

with two-tailed t-test, P = 1.5⇥ 10�195, n = 7311; Fig. 3d, right).198

Next, we analyze how weights are configured depending on neural response similari-199

ties. Using the total excitatory input current
P

j wijsj as an indicator of graded output200

activity, we find that neurons are more likely to stay connected after consolidation if201
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Fig. 3 Signs of consolidation across three spatial scales. (a) Weight matrix (left) and input
current (right) of 40 neurons during pattern recall, before consolidation (f = 0.05, ↵ = 0.44). The
network receives a cue every 10 steps and is then simulated for 10 steps. Synaptic noise starts after 50
steps (red line; �noise/huiobs = 0.3). (b) Same as a, but after consolidation. (c) Distribution of weights
(left) and dendritic spine sizes on pyramidal cells in rodent cortex [52] (right). (d) Pruning probability
as a function of weight in simulated data (left) and as a function of spine size in experimental data
(right). (e) Connection probability (left) and connection strength (right) as a function of binned response
correlation among simulated neurons (black) and pyramidal cells in rodent visual cortex [53] (blue; error
bars represent mean ± SEM). Dashed curves are grand averages. Connection strengths are normalized
to have a maximum of one. (f) Tuning curves with respect to familiar and novel (previously unseen)
stimuli, for simulated neurons (left; mean over 103 neurons) and for pyramidal cells in macaque inferior
temporal cortex [54] (right; mean ± SEM). (g) Tuning sparseness in simulations (circles; mean over 103

neurons) and experimental data (squares; mean ± SEM). The hard and soft output is obtained by using
sigmoidal activation functions with varying smoothness. (h) Left panel shows change in pattern SNR
after simulated consolidation (circles are patterns) while right panel shows change in human memory
trace SNR after sleep (pink markers) and after wake (blue markers) [55–57]. Behavioral data has been
slightly jittered for clarity. (i) Change in pattern SNR after simulated consolidation with di↵erent loads.
Stars indicate significance levels ⇤⇤P < 0.01 and ⇤⇤⇤P < 0.001.

their responses during recall are correlated (Fig. 3e, left). Similar synaptic selectivity202

is seen in experimental measurements of visual cortical neurons in mice during static203

image presentations [53] (two-sided Cochran-Armitage trend test, P = 1.7 ⇥ 10�7,204

n = 520). The average connection strength also increases with response correlation,205

both in simulated and experimental data (Spearman’s ⇢ = 0.45, P = 8.7 ⇥ 10�5,206

n = 72; Fig. 3e, right). Networks with single-factor synapses, however, fail to match207

experimental statistics (Suppl. Fig. S5b).208
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Another direct consequence of our consolidation model is an increased neural stim-209

ulus selectivity. Each neuron’s response to the stored patterns is enhanced by moving210

the input current further away from the threshold. This sharpens the tuning curve211

for familiar (consolidated) patterns relative to novel ones (Fig. 3f, left; see Methods212

4.12). The same phenomenon can be observed in the activity of inferotemporal cor-213

tical pyramidal cells of Macaques, measured during the presentation of familiar and214

novel images [54] (Welch’s t-test, ⇤⇤P < 0.01, ⇤⇤⇤P = 1.5⇥10�5, n = 73; Fig. 3f, right).215

The sharpness of the tuning curve is quantified by the sparseness, a metric that is216

near zero when all stimulus responses are similar, and near one when responses are217

selective to very few stimuli (see Methods 4.12). The sparseness increases significantly218

during stimulus familiarization (Welch’s t-test, P = 2.9⇥ 10�3, n = 73; Fig. 3g).219

On the behavioral level, sleep has been shown to enhance the ability to recall220

recently formed declarative memory [58], in a way that suggests larger improvements221

for items with weaker initial encoding [59]. We reproduce this e↵ect by evaluating222

the change in SNR for each pattern over the course of simulated consolidation (Fig.223

3h, left). Although a longer period of replay produces a stronger average encoding224

(curve shifts upwards), patterns that start o↵ weak consistently benefit more than225

those starting strong (correlation is negative). This is a ceiling e↵ect: as the SNR of226

each pattern is pushed to an upper limit, weak patterns inevitably exhibit a larger227

improvement than strong ones.228

We further test the model by pooling and re-analyzing three large, published229

datasets on sleep-based consolidation of declarative memory [55–57]. In each study,230

humans memorize 40 word pairs and recall is tested before and after 12 h of wake-231

fulness or sleep. We estimate the memory SNR in each subject as the z-scored recall232

rate, and then compute the change between the two test sessions. The result (Fig. 3h,233

right) confirms that gains in SNR are higher for subjects with weaker initial encod-234

ing, both after wakefulness (Pearson’s r = �0.21, P = 6.7⇥ 10�6, n = 437) and sleep235

(r = �0.17, P = 4.6⇥ 10�4, n = 439). There is no significant di↵erence in the slopes236

(t-test, P = 0.49, n = 876), but sleep-gains are systematically higher across all ini-237

tial performance levels (t-test, P = 3.9 ⇥ 10�4, n = 876). Our model predicts that a238

similar systematic shift in gains also should be observed when changing the word list239

length (Fig. 3i).240

2.4 Implications for lifelong learning241

To model the e↵ects of consolidation over timescales of months and years, we start242

from the assumption that animals continually form new engrams throughout their243

lives, as a response to new and salient stimuli. This, in turn, increases memory load.244

We therefore represent cortical circuits at di↵erent stages in life using a network that245

has consolidated varying amounts of memory. We also use this model to represent246

cortical development under conditions of low or high environmental richness.247

According to our model, a circuit that optimally stores a larger number of memories248

requires a higher density of connections (Fig. 4a, left). This is a direct consequence249

of maximizing SNR under sparseness constraints (see Fig. 2e, z � 2). Importantly, it250

is consistent with the elevation in dendritic spine density that has been observed in251

animals raised in stimulus-enriched environments [60] (Student’s t-test, P = 5.7⇥10�3,252

nlow = 5, nhigh = 6 for layer 5; P = 0.035, nlow = 4, nhigh = 4 for layer 2/3; Fig. 4a,253

right). This experimental finding cannot be reproduced if we alter the consolidation254

model to maximize storage capacity instead of SNR, as has been suggested in past255

theoretical work [14–16, 62] (Fig. 4a, black; see Methods 4.11). The e↵ect is also256

occluded when using single-factor synapses (Fig. 4a, gray).257

Networks that optimally store more memories also exhibit flatter tuning profiles258

and, thus, decreased sparseness (Fig. 4b, left). This is a fundamental property of259

our consolidation algorithm, caused by the decrease in the maximum attainable SNR260

with load (see Fig. 2h,j). The e↵ect is analogous to the decline in sparseness that has261

been measured in visual cortical neurons of ferrets at di↵erent stages of development,262

from eye-opening to adulthood [61] (Spearman’s ⇢ = �0.69, P = 2.9 ⇥ 10�3, n =263
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Fig. 4 Signs of consolidation across development. (a) Left: Connection density as a function of
storage load (indirect indicator of environmental richness) after consolidation with our model (z = 1, 2;
same as Fig. 2) and with a control model that maximizes storage load instead of SNR (see Methods
4.11). Right: Density of stable dendritic spines (age > 3 weeks) in somatosensory cortex of rodents kept
in environments of low and high stimulus richness since infancy [60]. Stars indicate significance levels
⇤P < 0.05 and ⇤⇤P < 0.01. (b) Left: Sparseness across stimuli (red, black) and across neurons (pink,
gray; see Methods 4.12) as a function of storage load (indirect indicator of age) after consolidating low-
activity patterns (f = 0.05) with our model (z = 2) and the control model. Right: Sparseness across time
(red) and across neurons (pink) for neurons in visual cortex of ferrets at di↵erent stages of development
[61]. Circles represent mean over 103 simulated neurons while squares represent experimental data (mean
± SEM).

16 for sparseness across time; ⇢ = �0.67, P = 4.5 ⇥ 10�3, n = 16 for sparseness264

across neurons; Fig. 4b, right). This trend cannot be reproduced with a network that265

maximizes storage capacity instead of SNR (Fig. 4b, black).266

2.5 Scaling of intrinsic synaptic noise267

Our consolidation model crucially relies on the parameterization of each synaptic268

weight wij as a product of multiple components uijk. Is it possible to detect signatures269

of such synaptic ultrastructure in available experimental data? To answer this, we first270

note that a key prediction of our model can be found in the synaptic noise scaling.271

When the volatile component uij1 is subjected to random perturbations, the weight272

of the synapse, as a whole, fluctuates with an amplitude �w / w
1�1/z. For two-factor273

synapses, this reduces to274

�w /
p
w . (5)

Stated more generally, our model predicts that synapses with more than one compo-275

nent display intrinsic noise that scales sublinearly with weight, both for potentiation276

and depression. It is only in the limit of infinitely many components (z !1) that the277

noise magnitude becomes proportional to the weight. Conversely, only synapses with278

a single component produce intrinsic noise that is additive and uncorrelated with the279

weight.280

To validate this prediction with an artificial synaptic dataset, we model the internal281

structure of a synapse as a stochastic dynamical system, and use this to simulate the282

evolution of 1000 independent synapses through time (see Methods 4.10).283

The data is analyzed by plotting the absolute weight change |�w(t)| = |w(t+�t)�284

w(t)| as a function of the initial weight w(t) and then applying a moving average to285

detect underlying trends in the scattered data (Fig. 5a). Consistent with our theory,286

9

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 24, 2024. ; https://doi.org/10.1101/2024.07.23.604787doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.23.604787
http://creativecommons.org/licenses/by/4.0/


Th 
ory

Sim
ula

tion

Ha
zan

 & 
Ziv

, 20
20 

(sil
 nc

 d)

Ha
zan

 & 
Ziv

, 20
20 

(ctr
l)

Ka
ufm

an 
 t a

l., 2
012

Fis
h r

-La
vi 

 & 
Ziv

, 20
13 

(PS
D9
5)

Fis
h r

-La
vi 

 & 
Ziv

, 20
13 

(Mu
nc1

3)
99%

 CI

Miy
am
oto
 et 
al.,
 20
21 
(sle
ep,
 Gl
uA1
)

Miy
am
oto
 et 
al.,
 20
21 
(sle
ep,
 sp
ine
 he
ad)

Ish
ii e
t al
., 2
018
 (Fm

r1-K
 , 
10m

in)

Miy
am
oto
 et 
al.,
 20
21 
(wa
ke,
 Gl
uA1
)

Miy
am
oto
 et 
al.,
 20
21 
(wa
ke,
 sp
ine
 he
ad)

We
gne
r et
 al.
, 20
22 
(EE
, sp
ine
 he
ad)

We
gne
r et
 al.
, 20
22 
(EE
, PS
D9
5)

We
gne
r et
 al.
, 20
22 
(ctr
l, s
pin
e h
ead
)

Ish
ii e
t al
., 2
018
 (W
T, 1
0m
in)

We
gne
r et
 al.
, 20
22 
(ctr
l, P
SD
95)
99%

 CI

Ga
la e
t al
., 2
017

Loe
we
nst
ein
 et 
al.,
 20
11

Ish
ii e
t al
., 2
018
 (Fm

r1-K
 , 
48h
)

Ish
ii e
t al
., 2
018
 (W
T, 4
8h)

Ste
ffen
s e
t al
., 2
021
99%

 CI

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sc
al
in
g 
ex
po
ne
nt

z=1

z=2

z=3
z=4
z=5

z�∞

Short intervals (25min ≤ Δt ≤ 1h)
Large samples (≥104)

Short/Medium intervals (10min ≤ Δt ≤ 7h)
Small samples (≤103)

Long intervals (Δt ≥ 48h)   

10−1 100

w

10−3

10−2

10−1

|Δ
w

|

0.48
0.44

Simulation (z= 2)

Δw> 0
Δw< 0

100
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Fig. 5 Scaling of synaptic fluctuations. (a) Absolute weight change as a function of initial weight
in simulated data with z = 2, for potentiation (orange) and depression (blue); see also Suppl. Fig. S6a.
Solid lines are the results of moving averages, and dashed lines are linear fits to the solid lines (slope
value shown in upper left corner). The identity line (gray) has slope 1, and is included for comparison.
(b) The same type of plot as in a, but for experimentally measured dendritic spine sizes in rodent
cortical neurons [63, 64] (see also Suppl. Fig. S6b). (c) The scaling exponent of synaptic fluctuations
in simulated (circles) and experimental data (squares; mean ± SE). This is the slope of the average
fluctuation size in logarithmic space, obtained with bootstrapped linear regression. Labels on the abscissa
contain a publication reference and a brief methodological descriptor; complete details are provided in
Supplementary Tables S4, S5, and S6.

the average noise amplitude, denoted h|�w|i, increases linearly in a log-log plot (Fig.287

5a), both for depression (�w < 0) and potentiation (�w > 0). This indicates a power-288

law relation h|�w|i / w
x, where the exponent x is equivalent to the slope of the line289

in logarithmic space. We estimate this parameter using bootstrapped linear regression290

(see Methods 4.12), and find that it closely agrees with the theoretical prediction291

(Suppl. Fig. S6a).292

To test our prediction on experimental data, we compile 20 published synaptic293

datasets from 9 separate studies [29, 52, 63–69]. These publications span more than a294

decade of research and employ fluorescence microscopy and super-resolution nanoscopy295

in both cultured neurons and live animals, under various environmental conditions296

(see Suppl. Tables S4, S5, and S6 for details). Common to all studies, however, is297

that they measure an indirect indicator of synaptic strength (denoted ŵ) in a large298
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Fig. 6 Signs of homeostatic scaling in synaptic noise. (a) The coe�cient of variation (CV) of
the norm (

P
wq)1/q , ranked from zero to one, as a function of q in simulated data (black, gray) and in

dendritic spine sizes (red) measured on pyramidal cells from rodent cortex [63] (mean ± SE, bootstrap
of 1000 samples). (b) The exponent qmin at which the CV in a is minimized.

population of synapses that have been individually tracked over extended periods of299

time (ranging from 24 h to almost 30 d).300

We re-analyze each dataset according to the procedure described above. In the301

two largest datasets, shown as examples in Figure 5b, the average noise magnitude302

exhibits a clear linear dependence on the synaptic strength in logarithmic space, again303

indicating an underlying power-law like that found in simulations (similar results are304

reported in refs. 67, 70; see Suppl. Fig. S6b for more examples). The estimated noise305

scaling exponent for each dataset is presented in Figure 5c.306

For large datasets with high sampling frequencies (i.e., short sampling intervals307

�t  1 h; Fig. 5c, first group of data), synaptic fluctuations consistently have a sub-308

linear scaling, with an exponent of 0.56 ± 0.02 for potentiation and 0.69 ± 0.02 for309

depression (99% weighted confidence interval). These estimates are remarkably reli-310

able and close to the range predicted by our synaptic noise model with z = 2 and311

3. Note, however, that our model only describes intrinsic noise, which is best mea-312

sured in conditions when activity-dependent synaptic plasticity is either negligible or313

entirely blocked. Theoretical predictions are therefore only approximately applicable314

to the experiments, which, in almost all cases, contain extrinsic synaptic noise. The315

data by Hazan & Ziv [64] is a notable exception, as this was acquired while gluta-316

matergic transmission was pharmacologically blocked. In this case, the noise scaling317

almost exactly matches the theoretical lines for z = 2 and 3, as we obtain 0.51± 0.01318

for potentiation and 0.64±0.01 for depression (mean ± SE, bootstrap of 100 samples;319

Fig. 5b, left).320

In datasets with smaller sample sizes (Fig. 5c, second group) and longer sampling321

intervals (Fig. 5c, third group), the scaling exponent generally increases for depression322

and decreases for potentiation (Fig. 5c, second and third confidence intervals; see323

Suppl. Note S.4).324

2.6 Signs of homeostatic scaling in synaptic noise325

Our plasticity model does not only govern the trajectory of individual synapses, but326

it also shapes the distribution of synaptic populations. Recall that our model includes327

homeostatic scaling that, close to optimal storage, maintains a constant synaptic328

“mass”
P

w
2/z. The implication is that the weight distribution, in the absence of329

activity-dependent plasticity, exhibits a constant 2
z -th moment. To confirm this numer-330

ically, we return to the simulated synaptic data and estimate the stability of di↵erent331

moments of the weight distribution by calculating the coe�cient of variation (CV) of332

the norm (
P

w
q)1/q across time (Fig. 6b). Consistent with theory, we find that the333

weight norm that varies least over time (i.e., has lowest CV rank) roughly follows the334

relation qmin = 2/z (Fig. 6c).335
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We test this prediction using the experimental data reported by Kaufman et al.336

[63], which comprises 1087 dendritic spines, measured every 30min over a total of337

24 h. At each measurement, we calculate the norm of spine sizes, followed by the CV338

of the norm across time. The result, plotted as a function of q, displays a U-shaped339

curve that is best matched by the two-factor model (R2 = 0.20 for z = 2, compared340

to second best R2 = 0.14 for z = 3; Fig. 6b, pink curve). The smallest CV is obtained341

at qmin = 1.12± 0.42, close to the theoretical prediction for z = 2 (Fig. 6c, pink line).342

3 Discussion343

We have derived a general mathematical model of synaptic consolidation based on the344

optimization of noise-robust recall of attractor memories in recurrent neural networks345

with factorized multi-component synapses. The contribution of our work is two-fold:346

First, it demonstrates that the various mechanisms underlying consolidation can be347

derived from first principles, within a single model of optimal memory storage. Second,348

by linking optimality to synaptic plasticity and the concept of critical capacity, it349

o↵ers an explanation of how the structured connectivity of optimal attractor networks350

[14–16] might emerge in cortical circuits.351

In the special case of two-factor synapses, our plasticity model takes a particularly352

simple form, in which all updates are multiplicative, both in terms of sub-synaptic353

factors u and the whole synaptic weight w. Despite this, a large fraction of all connec-354

tions are pruned while the average strength of surviving synapses is homeostatically355

regulated. This resolves a contradiction in past synaptic plasticity studies: Sparse356

connectivity, like that measured in neocortex [6], has been di�cult to reconcile with357

multiplicative homeostatic scaling [31], given that Hebbian plasticity with multiplica-358

tive constraints tends to produce dense solutions [71]. Sparse solutions typically require359

constraints that are either additive [16, 34, 71, 72] or that impose hard thresholds [34].360

This, however, generally requires hyperparameter-tuning prior to learning (see Suppl.361

Note S.1.3). In our model, the introduction of sub-synaptic components reconciles the362

need for sparsification with multiplicative homeostatic plasticity.363

Our results suggest that synaptic structural complexity serves a computational364

and metabolic purpose by implicitly biasing connectivity to be sparse, thereby lower-365

ing energy consumption and freeing unneeded synaptic resources for future learning.366

As such, our work is complementary to recent studies analyzing the e↵ects of the367

synaptic ultrastructure on memory stability [73, 74], consolidation [43, 75], and energy368

consumption [76] (see also ref. 44).369

We interpret our consolidation model as a general theory of sleep by situating it370

in the following scenario: During wakefulness, the network undergoes intense sensory-371

driven stimulation which imprints neural activity patterns as attractors. These are372

initially labile and, thus, represent immature engrams that are di�cult to recall and373

are easily erased by spurious plasticity. During sleep, external inputs are silenced and374

patterns can be replayed. The process of consolidation now serves to tune connectivity375

in a way that enlarges all basins of attraction and pushes the network to critical capac-376

ity. This stabilizes the engrams and makes them resilient to structural and sensory377

perturbations.378

Our model relies on a self-supervised replay mechanism that first reinstates mem-379

ories sequentially, and thereafter modifies the synapses. This implies that memories380

must be recallable prior to sleep and that replay must be significantly faster than381

plasticity expression. Both requirements are supported by experimental observations382

[59, 77].383

Our account of sleep-based consolidation o↵ers an alternative to an earlier theory384

of sleep [78, 79], where replay is used to unlearn spurious attractors with anti-385

Hebbian plasticity in order to indirectly increase the robustness of desired memories.386

By contrast, our model is Hebbian and accomplishes the same goal by replaying only387

information that already is familiar, without having to identify spurious patterns.388

The plasticity rule that forms the core of our consolidation model can be tested in389

synaptic, neural, and behavioral data. On the synaptic level, the model predicts that390
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the internal structure of a synapse manifests itself as a sublinear scaling of intrinsic391

noise fluctuations. For two-factor synapses, this specifically means that noise scales as392

O(
p
w). We emphasize, however, that an accurate analysis of synaptic noise requires393

a high sampling frequency and silencing of neural activity. Estimates of noise scaling394

are uninformative if the time between measurements is too long, as this only provides395

a temporal average that obscures the dynamics of instantaneous fluctuations.396

On the neural level, our plasticity model requires a gating function that predicts397

that patterns linked to novel, immature, or otherwise weak memories induce higher398

levels of plasticity, compared to patterns representing highly familiar memories.399

Finally, on the behavioral level, we predict that memory items that are weakly400

encoded prior to sleep generally display a larger improvement in SNR (and in the401

rate of recall) after sleep. While we partly confirm this with three large, published402

datasets, these cover only a part of the range of initial encoding. Moreover, our model403

predicts that the average recall performance should shift downwards when subjects404

are required to memorize more information, and vice versa.405

We anticipate that our normative account of synaptic consolidation will contribute406

to a better understanding of long-term memory by inspiring neurobiologists to test407

the model with future experiments.408
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4 Methods409

4.1 Circuit model410

We model a local cortical circuit of pyramidal cells as a recurrent network of N binary411

neurons. At time t, the output state si(t) of each neuron i = 1, . . . , N is given by412

si(t) = ⇥
�
Ii(t)

�
(6)

where ⇥ is the Heaviside function and Ii is the total input current, which is the sum413

of two non-negative current contributions, according to414

Ii(t) = Iexc,i(t)� Iinh,i(t) . (7)

The first term is the excitatory input, which is determined by the recurrent415

connectivity and the previous state of the network, as in416

Iexc,i(t) =
NX

j=1

wijsj(t� 1) (8)

where wij � 0 denotes the connection strength from neuron j to i. Self-connections417

are not allowed (i.e., wii = 0).418

The second current term, Iinh,i, is an inhibitory current which is neuron-specific419

and changes slowly, on a time-scale comparable to that of the excitatory weights (see420

plasticity rules below).421

4.2 Synapse model422

We consider each synapse to be comprised of z 2 N sub-synaptic components Uijk423

(also referred to as factors), such that the strength of the connection as a whole can424

be written as the product425

wij =
zY

k=1

Uijk . (9)

Each component can, for instance, be the area of a post-synaptic sca↵old protein, a426

concentration of membrane receptors, a relative receptor e�cacy, or a neurotransmitter427

release probability. It is therefore possible for each Uijk to represent a separate type of428

physical quantity, with its own unit of measurement. In order to measure the strength429

of all components on a common scale, we rewrite each one as430

Uijk = Ūkuijk (10)

where Ūk is a constant that carries the unit and sets the measurement scale, whereas431

uijk is a unit-free measure that represents a relative strength on the same scale for432

all k (the measurement scale is implicitly defined by the constraint in Eq. 39). The433

weight can now be written as434

wij = Ū ·
zY

k=1

uijk (11)

where the proportionality constant Ū =
Q

k Ūk is the same across all weights and435

neurons. This constant only changes the length of all weight vectors, and can therefore436

be set to Ū = 1 without any loss of generality.437

4.3 Memory patterns438

Each memory pattern consists of a random binary vector ⇠
µ
i , where i = 1, . . . , N is439

the neuron index, while µ = 1, . . . ,M is the index of the pattern. Each element ⇠µi is440
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independently assigned one with probability 0 < f < 0.5 and zero with probability441

1� f . The parameter f is the average fraction of active neurons in each pattern, and442

is therefore referred to as the level of pattern activity.443

We deviate slightly from this model when simulating wakefulness and sleep. In444

this case, each pattern contains exactly fN ones and (1� f)N zeros, to facilitate the445

few-shot learning procedure in wakefulness.446

4.4 Memory robustness447

The robustness of a single pattern µ with respect to neuron i is quantified with the448

signal-to-noise ratio of the input current at the moment of recall. We generally write449

this as450

SNRµ
i =

Signalµi
Noiseµi

(12)

where both the signal and noise are pattern- and neuron-specific. As an approximation,451

we replace the noise with the strictly neuron-specific variant, by averaging across all452

patterns and obtaining453

Noiseµi ⇡ Eµ[Noiseµi ] =: Noisei . (13)

Expressions for this quantity can be found in the next section. The signal is calculated454

as the signed input current deflection during noise-free recall, that is455

Signalµi = (
PN

j wij⇠
µ
j � Iinh,i)(2⇠

µ
i � 1)

!
= |
PN

j wij⇠
µ
j � Iinh,i|

= |Iµi |

(14)

where the highlighted equality holds under the assumption that all pattern have been456

encoded error-free. This gives us the approximation457

SNRµ
i ⇡

|Iµi |
Noisei

. (15)

We now define the robustness of pattern µ as a whole as the smallest SNRµ
i over all458

neurons, meaning459

SNRµ := min
i

SNRµ
i . (16)

The robustness for multiple patterns, however, is ill-defined, as the optimization of460

SNR for one pattern can be incompatible with the storage of another. Therefore, in461

order to guarantee that no pattern is destabilized and forgotten, we define the total462

robustness of multiple patterns as the SNR of the weakest pattern, so that463

SNR := min
µ

min
i

SNRµ
i (17)

The order of the two minimizations can be switched. This enables us to maximize464

the total SNR by letting each neuron independently maximize its neuron-specific465

robustness466

SNRi := min
µ

SNRµ
i . (18)

The optimal set of weights and inhibitions are defined as467

argmax
wi1,...,wiN

Iinh,i

SNRi . (19)
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4.5 Noise scaling468

One can distinguish between a total of three types of noise in the network: background469

noise, neural noise, and synaptic noise. We define the first two types in the same way470

as previous theoretical work [45], and then complement the analysis with the third471

type, which is new.472

Background noise473

Background noise refers to noise that is caused either by biochemical processes inherent474

to the neurons themselves, or by external inputs that are unrelated to the neural475

circuit we are observing. As such, we model background noise as a weight-independent,476

random current contribution �Ii that is added to the total input current, according to477

Îi =
NX

j

wijsj � Iinh,i + �Ii (20)

where Îi denotes a noisy, stochastic variant of the deterministic input current Ii. Such478

noise can be made arbitrarily small in relation to the signal, irrespective of the tuning479

of individual weights, simply by scaling up the excitatory and inhibitory currents. We480

therefore omit background noise from further analysis.481

Neural noise482

Neural noise corresponds to noise that directly alters the output state of neurons.483

This is, for example, caused by distorted external stimuli or by transmission failures484

in a↵erent connections, that trigger firing when inputs are below threshold, or block485

firing when inputs are above threshold. We assume that distorted stimuli are generated486

by the same statistical process as the original patterns, and that they therefore retain487

the same average level of activity. To create a distorted instance of pattern µ, we flip488

the original pattern state ⇠
µ
i according to489

0 7! 1 with probability fnoise
2(1�f) (21)

1 7! 0 with probability fnoise
2f (22)

and obtain a new pattern ⇠̂
µ
i , which, on average, contains Nfnoise errors, where fnoise490

is referred to as the noise level. This can be shown by calculating the expected error491

rate492

E
h
|⇠̂ � ⇠|

i
= P

⇣
⇠̂=1 | ⇠=0

⌘
P
⇣
⇠=0

⌘
+ P

⇣
⇠̂=0 | ⇠=1

⌘
P
⇣
⇠=1

⌘

=
fnoise

2(1� f)
(1� f) +

fnoise

2f
f

= fnoise .

(23)

The activity level in the distorted pattern, however, remains unchanged, as shown by493

E
h
⇠̂

i
= P

⇣
⇠̂=1

⌘

= P
⇣
⇠̂=1 | ⇠=0

⌘
P
⇣
⇠=0

⌘
+ P

⇣
⇠̂=1 | ⇠=1

⌘
P
⇣
⇠=1

⌘

=
fnoise

2(1� f)
(1� f) + (1� fnoise

2f
)f

= f .

(24)

The distorted pattern ⇠̂
µ
i can be compactly described as a random variable494

⇠̂
µ
i ⇠ Bernoulli

✓
fnoise

2(1� f)
(1� ⇠

µ
i ) + (1� fnoise

2f
)⇠µi

◆
. (25)
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During pattern recall, we initialize each neuron i in the state ⇠̂
µ
i , and update the495

network synchronously. Each neuron receives an input current that, across multiple496

trials, fluctuates with variance497

V⇠̂µj

h
Îi

i
= V⇠̂µj

hPN
j wij ⇠̂

µ
j

i

=
PN

j w
2
ij V⇠̂µj

h
⇠̂
µ
j

i

=
PN

j w
2
ij

h
fnoise
2(1�f)

⇣
1� fnoise

2(1�f)

⌘
(1� ⇠

µ
j )

+ fnoise
2f

⇣
1� fnoise

2f

⌘
⇠
µ
j

i
.

(26)

We average this quantity over all stored patterns and obtain498

Eµ

h
V⇠̂µj

h
Îi

ii
=
PN

j w
2
ij

h
fnoise +

f2
noise
4

⇣
1�2f
f(1�f)

⌘i
. (27)

We finally estimate the noise fluctuation size as the averaged standard deviation499

Neural noisei =

r
PN

j w
2
ij

h
fnoise +

f2
noise
4

⇣
1�2f
f(1�f)

⌘i
. (28)

When evaluating the empirical robustness to neural noise, we report the results in500

terms of the relative noise level fnoise/f  2.501

Synaptic noise502

Synaptic noise represents intrinsic fluctuations in the most volatile constituents of the503

synaptic anatomy. We model this noise by adding a small, i.i.d. random perturbation504

�u to one of the sub-synaptic components in all observable (non-pruned) connections.505

The perturbation is drawn from a normal distribution N (0,�2
noise). For simplicity, we506

assume that all sub-synaptic components are equal, so that uij1 = . . . = uijz = uij507

(we later show that this assumption is justified in consolidated networks).508

First, we note that a perturbation �u in one of the sub-synaptic components causes509

the whole weight to be perturbed with a magnitude �w given by510

�w = ŵ � w = û · uz�1 � u
z

= (u+ �u) · uz�1 � u
z

= �u · uz�1

= �u · w1�1/z

(29)

where we use the circumflex to, again, signify stochastically perturbed quantities. We511

test the impact of this noise on memory recall by first perturbing all connections in512

the network, then initializing each neuron i in a pattern ⇠
µ
i , and finally updating the513

network synchronously. We separate the robustness analysis into two cases:514

z = 1 After the first update, each neuron receives an input current that, across515

many trials, fluctuates with variance516

V�u

h
Îi

i
= V�u

hPN
j (uij + �uij)⇠

µ
j

i

=
PN

j ⇠
µ
j
2 V�u [�uij ]

=
PN

j:wij>0 ⇠
µ
j
2
�
2
noise .

(30)
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We average this quantity across all stored patterns and obtain517

Eµ

h
V�u

h
Îi

ii
=
PN

j:wij>0 f�
2
noise

= Nfwif�
2
noise

(31)

where fwi denotes the fraction of weights that impinge on neuron i and have518

not been pruned, that is519

fwi =
1

N

NX

j

1{wij>0} . (32)

This yields the averaged standard deviation520

Synaptic noise(z=1)
i = �noise

p
Nfwif . (33)

z > 1 For multi-factor synapses, the variance of trial-to-trial input fluctuations is521

given by522

V�u

h
Îi

i
= V�u

hPN
j (uij + �uij)u

z�1
ij ⇠

µ
j

i

=
PN

j u
2z�2
ij ⇠

µ
j
2 V�u [�uij ]

=
PN

j w
2�2/z
ij ⇠

µ
j
2
�
2
noise

(34)

where we insert uij = w
1/z
ij to produce the last expression. The average523

variance across all stored patterns is now524

Eµ

h
V�u

h
Îi

ii
=
PN

j w
2�2/z
ij f�

2
noise (35)

which yields the averaged standard deviation525

Synaptic noise(z>1)
i = �noise

qPN
j fw

2�2/z
ij . (36)

We compute the bias produced by synaptic noise as the di↵erence between the average526

input current in the noisy and noise-free condition. This is zero for any z, as shown by527

Biasi = Eµ,�u[Îi]� Eµ [Ii]

= Eµ,�u

hPN
j (uij + �uij)u

z�1
ij ⇠

µ
j

i
� Eµ

hPN
j wij⇠

µ
j

i

= Eµ,�u

hPN
j �uiju

z�1
ij ⇠

µ
j

i

= 0 .

(37)

In order to compare the robustness to synaptic noise empirically across di↵erent net-528

work models, we always scale the noise level �noise relative to the mean of all observable529

synaptic components huiiobs in each neuron i, where530

huiiobs =
P

j,k uijkP
j,k 1{uijk>0}

. (38)

In practice, this is done by scaling all a↵erent connections so that huiiobs = 0.1 prior531

to testing.532

4.6 Consolidation algorithm533

We define the process of consolidation as the maximization of the neuron-specific534

robustness SNRi in each neuron i. We achieve this by maximizing the signal while535
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keeping the noise fixed. The quantities N , M , f , fnoise, and �noise are intrinsic to536

the circuit, and therefore considered constant. Crucially, we formulate the maximiza-537

tion in terms of sub-synaptic components u, to ensure that the resulting algorithm538

employs multiplicative homeostatic scaling. Thus, we formally define consolidation as539

the optimization540

argmax
ui11,...,uiNz

Iinh,i

min
µ

|Iµi | s. t.
P

j,k u
2
ijk = ū (39)

where ū is an arbitrary constant. To make the problem more tractable, we denote the541

index of the weakest pattern as µ⇤

i = argminµ |I
µ
i | and rewrite the objective as542

min
µ

|Iµi | = |Iµ
⇤
i

i | =
X

µ

1{µ=µ⇤
i }

· |Iµi | . (40)

We solve this numerically using projected gradient descent. The derivative of the543

objective with respect to a weight component uijk is544

@

@uijk
|Iµ

⇤
i

i | =
X

µ

1{µ=µ⇤
i }

· sgn(Iµi )⇠
µ
j

Y

k0 6=k

uijk0 . (41)

To avoid having to determine µ
⇤

i in practice, we replace the indicator function with545

its soft approximation, defined as546

1{µ=µ⇤
i }
⇡ Softmin(|Iµi |) =

e
��i|I

µ
i |

P
µ e

��i|I
µ
i |

(42)

where �i is a precision parameter (also referred to as an inverse temperature). This547

approximation becomes an exact equality in the limit �i !1. Under the assumption548

that none of the sub-synaptic components are exactly zero, we further simplify the549

notation by writing550 Y

k0 6=k

uijk0 =
wij

uijk
. (43)

We now define a neuron-specific plasticity gating function gi as551

gi(I
µ
i ) := sgn(Iµi )e

��i|I
µ
i | (44)

where we use a neuron-specific precision parameter �i, given by552

�i :=
�̄

1
M

P
µ |I

µ
i |

(45)

which adjusts the width of the gating function according to the average input current553

(�̄ is a constant). We also use a neuron-specific learning rate554

Gi :=
ḡP

µ |gi(I
µ
i )|

(46)

that is computed at the end of each replay cycle to ensure that the total sum of555

expressed plasticity stays roughly at a constant level (ḡ is a constant). We insert Eqs.556

42–46 in Eq. 41 and obtain the synaptic update rule557

�uijk = ḡ · @
@uijk

|Iµ
⇤
i

i |

⇡ ḡ ·
P

µ Softmin(|Iµi |) sgn(I
µ
i )⇠

µ
j

wij

uijk

= Gi ·
P

µ g(I
µ
i )⇠

µ
j

wij

uijk
.

(47)
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Analogously, the update for the inhibitory current becomes558

�Iinh,i = ḡ · @
@Iinh,i

|Iµ
⇤
i

i |

⇡ �ḡ ·
P

µ Softmin(|Iµi |) sgn(I
µ
i )

= �Gi ·
P

µ g(I
µ
i ) .

(48)

We summarize the discrete-time consolidation process in Algorithm 1. When z = 1,559

and with specific choices of the g-function, this algorithm reduces to the well-known560

gradient ascent, normalized gradient ascent [80], and batch perceptron algorithm [81]561

(Suppl. Note S.1.6).562

At optimal weight configuration, all sub-synaptic components within the same563

weight adopt the same value, so that564

uij1 = uij2 = . . . = uijz =: uij . (49)

This is, in fact, a requirement that the solution must satisfy (see Supplementary Note565

S.1). The homeostatic constraint in Eq. 39 is now reduced to566

X

j,k

u
2
ijk =

X

j

zu
2
ij =

X

j

zw
2/z
ij = ū (50)

which means that the whole optimization problem is equivalent to an L2/z-regularized567

maximization, according to568

argmax
wi1,...,wiN

Iinh,i

min
µ

|Iµi | s. t.
P

j w
2/z
ij = w̄ (51)

where w̄ = ū/z.

Algorithm 1 Self-supervised consolidation in an attractor network

Apply to all neurons i = 1, 2, . . . , N in parallel:
Initialize: ḡ, �̄, �i = �̄/( 1

M

P
µ |I

µ
i |)

for replay cycle t = 1, 2, . . . do . loop over replay cycles

Part (i): Plasticity induction

g
(sum)
i ; I(sum)

i ; m; �Iinh,i; �ui...  0 . reset integrators

for pattern µ = 1, 2, . . . ,M do . replay patterns

si  ⇠
µ
i . cue pattern

I
µ
i  

PN
j wijsj � Iinh,i . update network

8j, k : �uijk  �uijk + gi(I
µ
i )sj

wij

uijk
. accumulate plasticity signals

�Iinh,i  �Iinh,i + gi(I
µ
i )

I
(sum)
i  I

(sum)
i + |Iµi | . integrate current

g
(sum)
i  g

(sum)
i + |gi(Iµi )| . integrate gating signal

m m+ 1 . integrate pattern counter

end for
Part (ii): Plasticity expression

Gi  ḡ/g
(sum)
i . adjust learning rate

�i  �̄m/I
(sum)
i . adjust gating window

uijk  [uijk +Gi�uijk]+ . express plasticity signal

uijk  uijk

q
ū/
P

j,k u
2
ijk . homeostatic scaling

wij  
Qz

k uijk . compute weight

Iinh,i  Iinh,i �Gi�Iinh,i . update inhibition

end for

569
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Continuous time570

To study the dynamics of the weights in continuous time, we formulate the optimiza-571

tion in Eq. 39 as the penalized objective function572

Q = �H
�P

j,k u
2
ijk ; ū

�
+ |Iµ

⇤
i

i | (52)

where H(x; x̄) is a homeostatic penalty function that is zero only when x = x̄ and573

increases monotonically everywhere else. The gradient is574

@Q
@uijk

= �H 0
�P

j,k u
2
ijk ; ū

�
· @
@uijk

P
j,k u

2
ijk + @

@uijk
|Iµ

⇤
i

i |

= 2h
�P

j,k u
2
ijk ; ū

�
uijk + @

@uijk
|Iµ

⇤
i

i |
(53)

where h := �H 0. We simplify the first term with the requirement in Eq. 50, and575

approximate the second term, as before, using Eqs. 42–46. Applying gradient ascent576

in the limit of infinitesimal learning rate gives us the gradient flow577

duij

dt
/
h
h
�P

j zu
2
ij ; ū

�
+Gi

P
µ g(I

µ
i )⇠

µ
j u

z�2
ij

i
· uij (54)

where a change of variables back to wij yields578

dwij

dt
/
h
h
�P

j w
2/z
ij ; w̄

�
+Gi

P
µ g(I

µ
i )⇠

µ
j w

1�2/z
ij

i
· wij . (55)

Note that both di↵erential equations become multiplicative if, and only if, z = 2.579

4.7 Numerical optimization and evaluation580

Initialization581

All sub-synaptic components are initialized by randomly sampling from the uniform582

distribution U(0.7u0, 1.3u0), where u0 > 0 is an arbitrary constant. This ensures that583

the initial u-distribution is strictly positive and has a width that is 60% of the mean,584

regardless of scaling. Additional parameter values can be found in Supplementary585

Table S1.586

In order to encode all patterns as attractors, prior to consolidation, the network587

is first trained using the batch perceptron algorithm [81] until all patterns can be588

recalled without error, where we define the recall error as the fraction of incorrect589

neurons after one synchronous state update. We compute this as590

E = 1
NM

PN
i

PM
µ |sµi � ⇠

µ
i | (56)

where591

s
µ
i = ⇥

�PN
j wij⇠

µ
j � Iinh,i

�
. (57)

Once E = 0 is reached, the network is consolidated according to Algorithm 1.592

Convergence593

During the course of consolidation, we monitor the performance of the network using594

the average SNRi, average weight density fwi , and error. The first two are calculated595

as596

hSNRii = 1
N

P
i SNRi (58)

and597

hfwii = 1
N

P
i fwi (59)

where the neuron-specific weight density fwi is estimated, in practice, using598

fwi =
1
N

P
j ⇥(wij � w0) (60)
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where w0 is the threshold at which a weight is considered pruned. In all simulations,599

we use w0 = 10�10.600

We consider the consolidation to have converged once hSNRii and hfwii change by601

less than 10�4 over 104 replay cycles, while the error still is at E = 0.602

Empirical robustness603

After optimization, we empirically evaluate the robustness of the network by initial-604

izing it in each pattern µ together with either neural noise or synaptic noise. We then605

update the network 50 times and determine if the end state is close to the original606

pattern using the criterion that the error must satisfy E < 0.2f . We perform this test607

20 times per pattern, with independent noise samples in each trial. We refer to the608

average fraction of patterns that can be recalled at each noise level as the recall ratio609

RR, and we define the empirical robustness as the noise level at which RR falls below610

50% (Suppl. Fig. S1).611

4.8 Theoretical solutions612

The theoretical solutions in Figure 2 are adapted from previously published work,613

primarily references 11, 16, 82, 83. For more details, see Supplementary Note S.2.614

4.9 Simulating wakefulness and sleep615

We model fast, wakeful learning using a few-shot plasticity rule [84], gated by a novelty616

signal. In each replay cycle, every pattern is presented in random order to the network.617

This means that the network is initialized in a pattern µ and thereafter updated once.618

If the subsequent state of the network displays an activity level that di↵ers from f ,619

an additional inhibitory current I(glob)inh is triggered to regain the desired activity. This620

indicates that the pattern does not yet form an error-free attractor. The result is621

registered by the novelty signal ḡnew according to622

ḡnew = |I(glob)inh | (61)

and the network is initialized once again in pattern µ and updated according to623

�uij1 = ḡnewḡwake(si � f)(sj � f)uij2

�uij2 = 0
(62)

without any homeostatic scaling. Inhibition is adjusted to balance excitatory input624

according to625

Iinh,i = Eexc,i +
p

2fN Vexc,i erfc
�1(2f) (63)

where Eexc and Vexc is shorthand for the mean and variance of the excitatory input626

current across pattern presentations, calculated as627

Eexc = Eµ

⇥P
j wij⇠

µ
j

⇤
= f

P
j wij

Vexc = Vµ

⇥P
j wij⇠

µ
j

⇤
= f(1� f)

P
j w

2
ij .

(64)

Wakeful learning is repeated until none of the patterns trigger the novelty signal.628

At this point, sleep commences, and both uij1 and uij2 are allowed to change. Con-629

solidation is now modeled using Algorithm 1. Parameter values can be found in630

Supplementary Table S2.631

4.10 Simulating synaptic intrinsic noise632

To simulate synaptic noise, we assume that one sub-synaptic component is volatile633

and changes with a fast time constant (fixed to 1), while all remaining components are634

22

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 24, 2024. ; https://doi.org/10.1101/2024.07.23.604787doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.23.604787
http://creativecommons.org/licenses/by/4.0/


more stable and characterized by the time constant ⌧ � 1. Each weight is therefore635

parameterized as636

wj = uj1|{z}
fast

· uj2 · · ·ujz| {z }
slow

(65)

where j = 1, . . . , N . The fast and slow components are governed by the stochastic637

dynamical system638

8
>>><

>>>:

duj1

dt
=
⇣
1� 1

N

P
j,k u

2
jk

⌘
uj1 + u0 + �noise�uj1

⌧
dujk

dt
=
⇣
1� 1

N

P
j,k u

2
jk

⌘
ujk + (uj1 � ujk) , k = 2, . . . , z

(66)

(67)

where �uj1 ⇠ N (0, 1), u0 is a bias, and �noise scales the amplitude of the noise fluctua-639

tions. All components are initialized at ujk = 1 and simulated with step size dt = 0.005640

for a total time of Tsim = 103, with a sampling time of Tsample = 1. The analysis in641

Figures 5 and 6 is performed using the last 144 samples (which corresponds to approx-642

imately 24 h if the time unit is assumed to be in the order of 10min). Additional643

parameter values can be found in Supplementary Table S3.644

4.11 Control model645

In Figure 4, we compare our model with a control model that has been used in past646

publications to train attractor networks to achieve optimal storage [13, 15, 16, 62].647

The latter approach is based on the assumption that cortical circuits store patterns648

with an SNR that is inherently fixed by the plasticity model. Early in development,649

the storage of new stimuli increases the load of the circuit (as long as ↵ < ↵c), until650

critical capacity is reached (↵ = ↵c), at which point the circuit enters a steady state651

where additional storage of new patterns is counterbalanced by forgetting old ones652

[14]. Stated mathematically, this type of consolidation maximizes the storage of the653

network at a fixed SNR, by solving654

argmax
wi1,...,wiN

M s. t. min
µ

|Iµi | = I0

Iinh,i = Iinh
(68)

where I0, Iinh > 0 are constants, and no further reparameterization of the weights is655

used. The first condition ensures that the signal is fixed, while the second condition656

imposes a constant inhibition. In ref. 13, it is shown that the solution to Eq. 68 satisfies657

P
j wij = Iinh/f +O(1/

p
N) (69)

which means that the sum of the weights is constant, up a to correction term that658

vanishes as N ! 1. If both the signal and the summed weights are constant, then659

the SNR with respect to q = 1 is also constant, which we write as660

SNRi(q = 1) =
Signali

Noisei(q = 1)
=

I0qP
j wij

= const. (70)

We emphasize that this di↵ers from our consolidation model, where we instead661

maximize the SNR for a fixed storage load M (see Eq. 39).662

Borrowing the notation in reference 13, Eq. 70 is equivalent to a fixed robustness663

parameter664

⇢i =
I0P
j wij

s
N

f(1� f)
. (71)

We train the control model using a variant of the perceptron algorithm, whereby we665

present each pattern µ to the network and compute |Iµi | for every neuron i. The666
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weakest pattern in each cycle is tagged with index µ
⇤

i = argminµ |I
µ
i | and used to667

calculate the robustness ⇢i. The neuron’s weights are now updated according to668

�wij =

(
ḡ(2⇠

µ⇤
i

i � 1)⇠
µ⇤
i

j if ⇢i < ⇢0

0 if ⇢i � ⇢0

(72)

where ⇢0 is the robustness threshold. The process is repeated until at least 99% of all669

neurons satisfy ⇢i � ⇢0, at which point the optimization stops.670

4.12 Data analysis671

Cortical connectivity672

The experimental data on connection probability among cortical excitatory cells is673

part of a publicly available compilation of 124 datasets that were included in a meta-674

analysis published by Zhang et al. [16]. We assign each dataset a weight �i according675

to the number of evaluated potential connections nconn, so that676

�i =
n
(i)
conn

Pnsets

i n
(i)
conn

. (73)

The weighted mean (wM) and weighted standard error (wSE) of the connection677

probability Pconn is estimated using678

wM =
Pnsets

i �iP
(i)
conn (74)

wSE =
qPnsets

i �i

�
P

(i)
conn � wM

�2
. (75)

Synaptic pruning679

To analyze the properties of synaptic pruning, we utilize the dataset published by680

Loewenstein et al. [52]. This consists of dendritic spine volume measurements con-681

ducted across six sessions, separated by a sampling interval of �t = 4d (see Table S6682

for details). We separate spines into three categories: (i) Spines that are first observed683

sometime between sessions 2 and 6 are defined as “young”. Spines observed in session684

1 have an unknown age, and are therefore left out. (ii) Spines that disappear at any685

time between sessions 1 and 6 are defined as “pruned”. (iii) Spines that can be seen686

in at least two consecutive sessions are defined as “old”.687

To estimate the pruning fraction, we first log-normalize the data by calculating688

the z-score in logarithmic space, according to689

Z(log x) =
log x� E[log x]p

V[log x]
. (76)

We then bin all spine volumes in sessions 1 to 5, and compute the ratio between the690

number of pruned spines and the total number of spines in each bin. Spines in session691

6 are omitted, as it is unknown how many of these that are pruned.692

We calculate the simulated pruning fraction in the same way, by comparing693

connection weights that are pruned during sleep to all connection weights before sleep.694

Connection selectivity695

In order to evaluate how network connectivity depends on neural response properties,696

we use the excitatory input current during pattern recall as a proxy for graded neural697

activity, and denote this rµi :=
P

j wij⇠
µ
j . We use this to calculate the neural response698

correlation between two neurons i and j as699

Cij =
Eµ[r

µ
i r

µ
j ]� Eµ[r

µ
i ]Eµ[r

µ
j ]q

Vµ[r
µ
i ]Vµ[r

µ
j ]

. (77)
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To estimate the connectivity and connection strength as a function of response corre-700

lation, we bin all neuron pairs according to Cij and thereafter compute the connection701

probability and average weight in each bin.702

We compare our simulations with the experimental data published by Cossell et703

al. [53]. This study reports the connectivity among pyramidal cells in layer 2/3 of704

mouse visual cortex, together with their neural activity and pair-wise correlations705

during presentations of natural static images. The authors estimate the connectivity706

and synaptic strength (in terms of excitatory post-synaptic potentials, EPSPs) as a707

function of pairwise correlations by binning neuron pairs as described above. In order708

to compare artificial weights with biological synapses, we normalize all weights and709

all EPSPs with the largest value in each dataset.710

Stimulus tuning711

We compute the neural response to a familiar (i.e., consolidated) pattern µ using712

r
µ
i :=

P
j wij⇠

µ
j . Analogously, the response to a novel pattern is computed as r̂

µ
i :=713

P
j wij ⇠̂

µ
j , where ⇠̂

µ denotes a previously unseen pattern that is created by randomly714

shu✏ing all entries in pattern ⇠
µ. In order to produce the tuning curve, we first z-score715

the response distribution of each neuron relative to its familiar responses, according to716

Z(rµi ) =
r
µ
i � Eµ[r

µ
i ]p

Vµ[r
µ
i ]

, Z(r̂µi ) =
r̂
µ
i � Eµ[r

µ
i ]p

Vµ[r
µ
i ]

. (78)

and we then sort all Z-scored responses and plot them as a function of their rank,717

ranging from 1 (highest) to 100 (lowest).718

The sharpness, or selectivity, of the tuning is quantified with the sparseness [85, 86],719

which is defined in general terms as720

Sparseness :=
Vx[r]

Ex[r2]
(79)

where r is a general neural output activity (e.g., firing rate). This is computed either721

across stimuli (x = µ) or across neurons (x = i); the former variant is typically called722

lifetime sparseness, and describes the selectivity of single neurons, whereas the latter723

is called population sparseness, and describes the response to a single stimulus in the724

entire population (see Suppl. Note S.3 for more details).725

We compare the simulated results with the data published by Woloszyn and Shein-726

berg [54]. This consists of firing rates measured in putative excitatory neurons in727

inferior temporal cortex of macaque monkeys during presentation of familiar and novel728

images of objects. The experimental firing rates are processed in the same way as the729

modeled neural responses.730

Associative memory tests in humans731

In order to estimate how the strength of memory encoding changes across wakefulness732

and sleep, we utilize the behavioral data reported by Fenn and Hambrick [55, 56], and733

Ashton and Cairney [57]. All three studies involve human subjects tasked with mem-734

orizing 40 semantically related word pairs, where recall performance is tested before735

and after a delay of roughly 12 h of wakefulness or sleep. We model the recall process736

according to signal detection theory [87], by assuming that the trace of a memory is737

encoded in each subject according to a subject-specific strength that is perturbed by738

noise at encoding time. All traces within a subject are therefore assumed to be approx-739

imately normally distributed after the initial training session. During testing, only740

memories whose trace exceeds a subject-specific threshold can be correctly recalled.741

We define the recall ratio as742

RR :=
Number of correctly recalled items

Total number of items
(80)
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and use this to estimate the average memory SNR in a subject as the distance from743

the average trace strength to the threshold; this is given by the z-scored recall ratio744

SNRexp := ��1(RR + ✏) (81)

where � is the normal cumulative distribution function and ✏ = (1 � 2RR) · 10�16 is745

a small corrective term added to avoid divergence. We calculate the change in SNR746

over the course of the delay period as747

�SNRexp = SNR(after)
exp � SNR(before)

exp (82)

and pool the three datasets. Data points that are further than four standard deviations748

from the mean are considered outliers and are removed. The data is then fit with the749

linear model750

�SNRexp = �0 + �1Xcond + �2SNR(before)
exp + �3XcondSNR(before)

exp (83)

where the experimental condition is coded by the categorical variable751

Xcond =

(
0 if wake

1 if sleep .
(84)

We determine if the intercept and slope di↵er significantly between wake and sleep by752

conducting a one-sample t-test of �1 and �3 relative to zero.753

Environmental enrichment754

In order to analyze the e↵ects of environmental enrichment on cortical connectivity,755

we reference the study by Jung and Herms [60]. This dataset contains measurements756

of dendritic spine density in the somatosensory cortex of mice that are kept in either757

stimulus-enriched or stimulus-impoverished environments from birth to adulthood.758

We reproduce the density of spines that are classified as “persistent”. These are older759

than 3 weeks and are therefore part of connections that, presumably, have undergone760

maturation and stabilization.761

Sparseness throughout development762

To observe how neural activation sparseness changes over long periods of time, we763

use the experimental data reported by Berkes et al. [61]. This consists of spike-time764

measurements in the visual cortex of awake ferrets that are shown a movie clip at765

di↵erent stages in development, ranging from the period of eye-opening to adulthood.766

We calculate firing rates by binning the spike data in 10ms bins. The sparseness is767

then obtained using Eq. 79.768

Synaptic noise scaling769

To study the scaling of synaptic noise, we use 20 di↵erent datasets of synaptic mea-770

surements, acquired in 9 previously published studies [29, 52, 63–69]. In general, each771

datapoint consists of a measurement of a synaptic strength proxy, denoted ŵ, and772

the observed change �ŵ following a sampling interval �t. We first separate the data773

into potentiation (�ŵ > 0) and depression (�ŵ < 0) and then calculate the average774

absolute change h|�ŵ|i as a function of initial strength by filtering all datapoints in775

(�ŵ, ŵ)-space with a moving average, using window size n/20, where n is the sample776

size.777

We obtain an estimate of the scaling exponent as the slope of h|�ŵ|i in logarithmic778

space, using linear regression. The mean (M) and standard error (SE) of the expo-779

nent is estimated by repeating the averaging and line-fitting with bootstrapping. All780

datasets are bootstrapped 1000 times, except the datasets in references 63–65, which781

are bootstrapped 100 times due to their exceptionally large sample size.782
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To summarize the estimates across datasets, we assign each estimate i a weight �i783

according to its inverse variance (squared standard error), as in784

�i = SE�2
i (85)

and we use this to calculate the weighted mean (wM) and weighted standard error785

(wSE) according to786

wM =

Pnsets

i �iMiPnsets

i �i
(86)

wSE =
1pPnsets

i �i

. (87)

The 99% confidence interval is finally estimated as [wM± 2.58 · wSE].787

The CV of synapse norms788

We use the artificial synaptic data that is obtained by simulating the dynamical system789

in Eq. 66, and we analyze only weights that survive until the end of the simulation790

(i.e., wj(Tsim) > 0). At each sampling time t, we calculate the q-norm of the weights791

with792

kw(t)kq =
⇣P

j wj(t)q
⌘1/q

. (88)

We then compute the CV of the q-norm across samples, according to793

CVq =

q
Vt

⇥
kw(t)kq

⇤

Et

⇥
kw(t)kq

⇤ . (89)

After repeating this process for a range of q-values, we compute the CV-rank by re-794

scaling all CVq-values to lie in the range [0, 1] (from smallest to largest) and we obtain795

the norm with smallest CV as796

qmin = argmin
q

CVq . (90)

We estimate the mean and standard error of the CV-rank and qmin by bootstrap-797

ping this procedure 1000 times. In each run, we generate the bootstrapped data by798

separately re-sampling weights at each time t.799

We compare simulated results with experimental data by utilizing the dendritic800

spine measurements reported by Kaufman et al. [63]. The experimental CV-rank and801

qmin are computed in exactly the same way as for the artificial data.802

Supplementary information. All Supplementary Notes, Figures, and Tables can803

be found in the Supplementary Material. The simulation code can be found at804

github.com/geoiat/2f-syn-con.805
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S.1 Analysis of the consolidation algorithm818

In this section, we explain the mathematical foundation of our consolidation algorithm819

and clarify its relation to other learning algorithms in the literature. As in the main820

text, we consider a recurrent neural network of N binary neurons with inhibition Iinh,i821

and connection weights wij � 0, where i, j = 1, . . . , N . For the sake of brevity, we822

introduce vector notation and represent all input weights to neuron i with the column823

vector wi = (wi1, . . . , wiN )> and each pattern µ as ⇠µ = (⇠µ1 , . . . , ⇠
µ
N )>. For added824

simplicity, we omit subscript i. The definition of memory robustness in Eq. 3 can now825

be expressed as826

SNR(q) / min
µ

(2⇠µ � 1)(w>⇠µ � Iinh)

kwkq/2q

(S1)

where the exponent q > 0 is chosen depending on the type of noise that is considered.827

Likewise, the aim of consolidation, as stated in the main text, can be written as the828

neuron-specific optimization829

argmax
w,Iinh

min
µ

(2⇠µ � 1)(w>⇠µ � Iinh) s. t. kwkq = const. (S2)

This maximizes SNR(q) subject to a homeostatic constraint placed on kwkq. Note,830

however, that without such a weight constraint, the SNR has no upper limit (for q < 2)831

and can be scaled up indefinitely, at a rate c
1�q/2, simply by scaling the weights with832

a constant c > 1.833

Any solution to Eq. S2 can, in theory, also be found with the optimization834

argmin
w,Iinh

kwkq s. t. min
µ

(2⇠µ � 1)(w>⇠µ � Iinh) = const. (S3)

but this process would, in practice, be incompatible with a homeostatic process that835

keeps the weight norm fixed.836

In machine learning terms, each neuron can be viewed as a linear classifier that837

discriminates M random input patterns ⇠µ according to the output labels ⇠µ. In this838

context, solving Eq. S2 (or S3) is equivalent to maximizing the classification margin839
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with respect to the Lq-norm, that is840

K(q) = min
µ

(2⇠µ � 1)(w>⇠µ � Iinh)

kwkq
. (S4)

Given a fixed load ↵ = M/N and pattern sparseness f , the maximum margin K
⇤ that841

a linear classifier can achieve is determined by a function K
⇤(↵, f, q). This defines842

the state of optimal storage, independently of the scaling of the weight vector w.843

Historically, however, it is more common to rearrange the max-margin function so844

that the state of optimality instead is defined as the maximum load ↵
⇤(K, f, q) that845

can be attained with a fixed margin K. In this context, the largest possible storage846

load, at any margin, is referred to as the critical capacity ↵c, which is given by847

↵c(f) = ↵
⇤(0, f, q) = max

K
↵
⇤(K, f, q) . (S5)

The reason this is independent of q is that a max-margin classifier at saturation848

(↵⇤ ! ↵c) has a vanishing margin (K ! 0) and therefore no degrees of freedom to849

move. Hence, only a single solution exists at ↵c, regardless of which norm that is used850

to measure the margin.851

As a notational rule, we use an asterisk (*) to denote any variable or function that852

is at optimal storage. Based on the two formulations of optimality, it is now possible853

to define the notion of optimal learning in two di↵erent ways:854

S.1.1 Robustness maximization855

By considering the state of optimal storage to be determined by K
⇤(↵, f, q), we can856

define optimal learning as the process of finding the network configuration857

argmax
w,Iinh

K with ↵, f, q = const. (S6)

This is known as the max-margin classifier or support vector machine [88], and it is858

equivalent to our definition of consolidation in Eq. S2 (see Suppl. Fig. S8, dark arrows).859

The advantages of this approach are two-fold: First, it allows the network to flexibly860

attain maximal robustness and to operate optimally, without risk of catastrophic for-861

getting, at every storage load that is below critical capacity (i.e., ↵ < ↵c). Second, it862

allows for this process to be carried out by an iterative learning rule that includes a863

homeostatic constraint on the weights.864

S.1.2 Storage maximization865

If one considers optimal storage to be defined by ↵
⇤(K, f, q), it is natural to formulate866

optimal learning as the process of finding867

argmax
w,Iinh

↵ with K, f, q = const. (S7)

We refer to this as the storage problem. The main advantage of this approach is that868

it, in certain cases, is analytically tractable and allows for the optimal state of the869

network to be described with closed-form solutions in the mean-field limit N ! 1.870

Here, we focus on three specific cases:871

q = 2 This solution is provided by Gardner [11] and is obtained under the weight872

scaling w ⇠ O(1/
p
N) (see Suppl. Fig. S8a, light arrow). We use this to873

compute the maximum SNR with respect to neural noise. For technical874

details, see Supplementary Note S.2.1.875

q = 1 This solution can be found in references 12, 13, 16 and is obtained by876

keeping Iinh fixed and scaling the weights as w ⇠ O(1/N) (see Suppl. Fig.877
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S8b, light arrow). We use this solution to compute the maximum SNR878

with respect to synaptic noise in networks with two-factor synapses. For879

technical details, consult Supplementary Note S.2.2.880

q ! 0 This solution is derived by Bouten et al. [82] by optimally diluting Gard-881

ner’s solution for q = 2. It describes the maximum amount of pruning that882

can be supported by a network. For technical details, see Supplementary883

Note S.2.3.884

As a model of memory consolidation, however, the mean-field formulation has a num-885

ber of disadvantages. Mainly, it is unclear how to translate it to a biologically realistic886

iterative learning rule, given that the margin K is a constant that has to be fine-tuned,887

a priori, to the particular load ↵ that the network needs to store. One way to avoid888

this issue is to assume that K always stays fixed and is hard-coded into the learning889

rule. This is the approach taken in references 13, 45, 62 and in our control model.890

However, as suggested in Figure 4, this type of learning can only achieve optimal stor-891

age once the network has accumulated enough patterns to match the fixed margin.892

Until this point in time, the network operates at suboptimal storage. Moreover, after893

optimal storage load has been reached, the network must maintain a steady-state of894

stored patterns, in order to avoid catastrophic forgetting [14].895

Finally, we argue that the basic assumption that neural circuits have a fixed robust-896

ness and learn to maximize the amount of memories is problematic from an ethological897

perspective. It implies that the brain does not adapt to environmental cognitive pres-898

sures, but instead passively incorporates information as it is encountered, without899

allowing for further improvement in the encoding.900

S.1.3 Geometrical interpretation901

Instead of solving Eq. S2 directly in terms of w, we derive our consolidation algorithm902

by maximizing the SNR in the space of sub-synaptic u-variables, by solving903

argmax
u1,...,uz

Iinh

min
µ

(2⇠µ � 1)(w>⇠µ � Iinh) s. t.
P

kkukk22 = const. (S8)

where the weight vector is composed of the Hadamard product w = u1� . . .�uz. At904

optimality, all sub-synaptic vectors align, so that u1 = . . . = uz = u. We prove this905

in the following theorem.906

Theorem 1. Let Q be homogeneous objective function that obeys Q(cw) = cQ(w)907

8c > 0, where w � 0, and consider the optimization problem908

argmax
u1,...,uz

Q
�
w(u1, . . . , uz)

�
s. t.

P
k u

2
k = ū ,

uk � 0 , 8k ,
(S9)

where ū is a constant and w is parameterized as909

w(u1, . . . , uz) =
zY

k

uk . (S10)

Then, any local maximum w
⇤(u⇤

1, . . . , u
⇤

z) must satisfy910

u
⇤

1 = u
⇤

2 = . . . = u
⇤

z . (S11)

Proof. Consider a z-dimensional space spanned by the all the u-variables. In the911

positive orthant, the local maximum (u⇤

1, . . . , u
⇤

z) forms a rectangle together with the912

coordinate axes. This rectangle has volume w
⇤ and a diagonal of length

p
ū. Recall913

that a rectangle with fixed volume minimizes the length of its diagonal only when all914
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sides have equal length (equivalently, a rectangle with fixed diagonal length achieves915

maximal volume only when all sides are equal). In our case, this implies that for any916

candidate solution w
⇤ with unequal u⇤-variables, a better solution can always be found917

with the following two steps:918

(i) Equalize all u⇤-variables and generate a new solution v
⇤ with the same volume919

w
⇤(v⇤, . . . , v⇤) = w

⇤(u⇤

1, . . . , u
⇤

z) (S12)

but with a shorter diagonal length920

P
k v

⇤2 = v̄ <
P

k u
⇤

k
2 = ū . (S13)

(ii) Rescale v
⇤ with the factor c̄ =

p
ū/v̄ > 1 so that

P
k(c̄v

⇤)2 = ū, which921

satisfies the optimization constraint. The objective function now assumes the922

value923

Q(c̄v⇤ · · · c̄v⇤) = Q(c̄zw⇤) = c̄
zQ(w⇤) > Q(w⇤) . (S14)

Thus, the new solution (c̄v⇤, . . . , c̄v⇤) is superior. This proves that the candidate924

(u⇤

1, . . . , u
⇤

z) can never be an optimum, and that Eq. S11 therefore is a necessary con-925

dition. This argument can be generalized to N dimensions, where w is replaced by926

the vector w = (w1, . . . , wN ). In this case, the two-step procedure is applied to each927

element of the vector separately. ⌅928

This result allows us to rewrite Eq. S8 as929

argmax
u,Iinh

min
µ

(2⇠µ � 1)(u�z>⇠µ � Iinh) s. t. kuk22 = const. (S15)

which, following a variable change u = w1/z, is equivalent to930

argmax
w,Iinh

min
µ

(2⇠µ � 1)(w>⇠µ � Iinh) s. t. kwk2/z2/z = const. (S16)

In other words, optimizing the SNR in u-space, using z components per weight, results931

in a weight vector that solves the original problem in Eq. S2 with exponent q = 2/z. In932

general, this type of regularized optimization yields progressively sparser solutions as z933

increases (i.e., q decreases). We provide an intuitive explanation for this phenomenon934

by analyzing the geometry of Eq. S2 from two perspectives: the neural state space and935

the loss landscape.936

Neural state space937

We consider a network of three neurons, and we study the two specific cases z = 1938

and z = 2, which are equivalent to solving Eq. S2 with q = 2 and q = 1, respectively.939

q = 2 The solution to Eq. S2 is equivalent to a sign-constrained linear classi-940

fier at maximum margin K
⇤(q = 2). In Supplementary Figure S9a, we941

illustrate this solution in the two-dimensional state space of the a↵erent942

neural activity. Here, the optimal weight vector w⇤ and inhibition I
⇤

inh943

together define a classification boundary that correctly separates all pat-944

terns ⇠µ and maximizes the Euclidean distance to the nearest items. The945

boundary is not biased towards any direction, so few entries in the normal946

vector are pushed to zero, which means that w⇤ is dense.947

q = 1 The solution to Eq. S2 is now equivalent to a sign-constrained linear948

classifier at maximum margin K
⇤(q = 1). We illustrate the state space949

representation of this solution in Supplementary Figure S9b. A theorem950

by Mangasarian [89] tells us that any classifier that maximizes the Lq-951

margin, where q � 1, corresponds, in geometrical terms, to a boundary952
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that maximizes the L q
q�1

-distance to the nearest points. Consequently, at953

K
⇤(q = 1), the solution is a boundary that maximizes the L1-distance954

to all patterns ⇠µ. This forces the boundary to align with some of the955

coordinate axes, which zeros the corresponding weights and makes w⇤
956

sparse.957

Loss landscape958

We consider, as in the previous section, a neuron with two-dimensional input, and we959

define, as a simple example, the optimization problem960

argmax
w1,w2�0

Q(w1, w2) s. t. kwkq = 1 (S17)

where Q is an objective function given by the paraboloid961

Q := �1.5(w1 � 0.55)2 � (w2 � 1.4)2 . (S18)

We present the Q-landscape, together with the constraint kwkq = 1, for di↵erent q-962

values, in Supplementary Figure S10a. As q is lowered, the shape of the constraint963

curve becomes more convex and moves the optimum closer to a sparse solution of type964

w⇤ = (0, w⇤

2).965

We can numerically search for the optimum by performing projected gradient966

ascent (Suppl. Fig. S10b) according to the iterative algorithm967

w  proj
H

�
w + ⌘rQ

�
(S19)

where ⌘ is the learning rate and the projection operator is defined as968

proj
H
(w) := argmin

w02H

kw0 �wk2 (S20)

where the feasible set is given by H := {w0 � 0 : kw0kq = 1}. We analyze three specific969

cases of this process:970

q = 2 The projection operator is reduced to a multiplicative scaling, where971

proj
H
(w) = w/kwk2 (S21)

similarly to Oja’s rule [90]. This is compatible with the kind of homeo-972

static synaptic plasticity that has been observed experimentally [31], but973

is irreconcilable with the high degree of sparsity seen in cortical circuits,974

given that solutions generally are dense [71].975

q = 1 The projection operator is reduced to a subtractive adjustment, applied976

elementwise according to977

proj
H
(w) = [w � ✓]+ (S22)

where [ · ]+ is the rectified linear function with a threshold ✓ that must be978

computed at every iteration, depending on w, to satisfy kwk1 = 1. The979

resulting learning rule is now incompatible with biological homeostatic980

plasticity, but produces solutions with a sparsity comparable to cortical981

connectivity. Similar methods are used in references 16, 34, 72, 91.982

0<q<1 A closed-form expression for the projection operator is not available,983

as the shape of the constraint curve requires an anisotropic projection984

that, in general, adjusts weights by di↵erent amounts depending on w.985
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This poses a problem both from a modeling perspective and in terms of986

biological plausibility.987

q = 0 In this case, the projection operator is reduced to the the hard threshold-988

ing operation989

proj
H
(w) = w �⇥(w � ✓) (S23)

where ⇥ is the Heaviside function with a threshold ✓ that must be com-990

puted at every iteration, depending on w, to satisfy kwk0 = 1. For991

example, in the two-dimensional case, one chooses ✓ = min(w1, w2). This992

type of projection does not impose any form of homeostatic plasticity,993

and only prunes weights in order to produce solutions with a pre-defined994

level of sparsity. A similar method is used in reference 34.995

We reconcile the need for multiplicative scaling with sparse solutions by expressing996

the weights as997

(w1, w2) = (uz
1, u

z
2) (S24)

and solving998

argmax
u1,u2�0

Q(uz
1, u

z
2) s. t. kuk2 = 1 . (S25)

In Supplementary Figure S10c, we plot the reparameterized Q-landscape using, as an999

example, z = 3, together with the constraint curve kwk2/3 = 1. The variable change1000

deforms the landscape in such a way that the constraint curve can be reached with a1001

multiplicative projection, even though the optimal solution remains sparse. The e↵ect1002

is the same for any pair of z and q = 2/z.1003

S.1.4 The gating function1004

Our derivation of the gating function g originates from the gradient calculation1005

@ Signal

@ujk
=
P

µ 1{µ=µ⇤} · sgn(Iµ)⇠µj
wj

ujk
(S26)

where we omit index i and use µ⇤ = argminµ |Iµ|. By replacing the indicator function1006

with the Softmin, as in1007

P
µ 1{µ=µ⇤} · sgn(Iµ) ⇡

e
��|Iµ

| · sgn(Iµ)P
µ e

��|Iµ|
(S27)

and then introducing1008

g(Iµ) = sgn(Iµ)e��|Iµ
| (S28)

we arrive at the gradient approximation1009

@ Signal

@ujk
⇡
P

µ g(I
µ)⇠µj

wj

ujkP
µ |g(Iµ)|

. (S29)

Note that the gating function takes on the shape of a surrogate gradient [92]. However,1010

in contrast to the typical use-case of surrogate gradients, the performance of our model1011

improves with higher �, as this reduces the discrepancy between the approximate and1012

true gradient (Suppl. Fig. S11). In order to guarantee that the approximate gradient1013

converges to the true gradient in the limit � !1, the tails of g must decay to zero at a1014

rate that is, at least, faster than a polynomial. We state this in the following theorem.1015

Theorem 2. Consider a general Softmin function1016

Softmin(xi) =
g(�xi)Pn
i g(�xi)

(S30)
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where xi > 0 8i, � > 0 is an inverse temperature, and g(x) is a finite and strictly1017

positive function that decays monotonically to zero as x!1. Then,1018

Softmin(xi)! 1{xi=mini xi}
in the limit � !1 (S31)

i↵ g decays faster than a polynomial, that is, g(x) ⇠ o(x�c), with 0 < c <1.1019

Proof. Let x1 and x2 denote the smallest and second smallest xi. The convergence1020

in Eq. S31 is equivalent to1021

lim
�!1

log

✓
Softmin(x1)

Softmin(x2)

◆
= log

✓
1{x1=mini xi}

1{x2=mini xi}

◆
=1 . (S32)

At the same time, we have1022

log

✓
Softmin(x1)

Softmin(x2)

◆
= log

✓
g(�x1)

g(�x2)

◆
= log g(�x1)� log g(�x2) . (S33)

We combine Eq. S32 with S33 and obtain1023

lim
�!1

log g(�x1)� log g(�x2)

log(�x1)� log(�x2)
= lim

�!1

log g(�x1)� log g(�x2)

log(x1)� log(x2)
= �1 (S34)

where the minus sign on the right-hand side is due to x1 < x2. This condition must1024

hold for any pair of x1 and x2, no matter how close they are to each other. In the1025

limit x2 ! x1, Eq. S34 is equivalent to1026

lim
�!1

d log(g(�x))

d log(�x)
= �1 (S35)

which states that the slope of g, in logarithmic space, cannot be bounded, but must1027

tend to �1. In other words, the tail of g must decay faster than a line in logarithmic1028

space, and, thus, faster than a polynomial in linear space, which means g(x) ⇠ o(x�c).1029

⌅1030

S.1.5 The homeostatic function1031

As shown in the Methods, the consolidation model with two-factor synapses can be1032

expressed in continuous time with the di↵erential equation1033

dwj

dt
/
h
h
�
kwk1 ; w̄

�
+G

P
µ g(I

µ)⇠µj

i
· wj (S36)

where we omit index i. The dynamics of the homeostatic term is determined by the1034

function h, which is defined as h = � d
dxH(x; x̄), where H represents a homeostatic1035

penalty function that is zero at x = x̄ and increases monotonically everywhere else.1036

This can be viewed as a generalized formulation of homeostatic plasticity, which,1037

depending on the exact shape of H, can be reduced to specific instances of plasticity1038

models that have been proposed in previous work. Consider the following three cases:1039

Case 1 If we choose the penalty function to be1040

H = 1
2

�
w̄ � kwk1

�2
(S37)

we obtain the homeostatic function1041

h = w̄ � kwk1 (S38)
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which is identical to the homeostatic scaling rule introduced by Renart et1042

al. [35], albeit expressed in terms of the summed weights instead of input1043

firing rates.1044

Case 2 If we instead define the penalty as1045

H = 1
2

✓
1� kwk1

w̄

◆2

(S39)

we retrieve the homeostatic function1046

h = 1� kwk1
w̄

(S40)

which is the homeostatic rule introduced in by Toyoizumi et al. [36], but1047

expressed in terms of summed weights instead of the input currents.1048

Case 3 A third alternative for the penalty function is1049

H = x log(x)� x , x =
kwk1
w̄

(S41)

which yields the homeostatic function1050

h = log

✓
w̄

kwk1

◆
. (S42)

This type of homeostatic scaling has, to the best of our knowledge, not1051

been proposed previously in the literature.1052

It is important to note that even though all homeostatic rules regulate the average1053

synaptic weight, they do so by monitoring di↵erent quantities. In case 1, the rule1054

depends on a raw deviation from the set-point, while, in case 2, it depends on the1055

percentage of the deviation. In the third case, the homeostatic rule depends only on1056

the ratio of kwk1 relative the set-point.1057

S.1.6 Related algorithms1058

In this section, we explain the link between the consolidation model and other iterative1059

learning algorithms. The expression for �uijk in Eq. 47 can be seen as a generalized1060

weight update rule, which, depending on the value of �i, can be reduced to three1061

well-known algorithms from the machine learning literature:1062

�i = 0 In this case, our update rule is reduced to the conventional gradient1063

ascent procedure1064

�uijk /
@Q
@uijk

(S43)

where the objective function Q is the average signal across all patterns,1065

given by1066

Q = 1
M

P
µ |I

µ
i | . (S44)

�i = 1 This case is equivalent to the normalized gradient ascent algorithm [80]1067

�uijk /
1

Q
@Q
@uijk

(S45)

applied to the exponential objective function1068

Q = �
P

µ e
�|Iµ

i |
. (S46)
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�i !1 In this limit, our update rule becomes identical to the batch perceptron1069

algorithm [81]1070

�uijk / sgn(I
µ⇤
i

i )⇠
µ⇤
i

i (S47)

where µ
⇤

i = argminµ |I
µ
i |.1071

Both the normalized gradient and the batch perceptron were originally introduced as1072

margin-maximizing learning rules. Indeed, as we demonstrate in Supplementary Figure1073

S11, the performance of our algorithm improves with increasing �i. At very high �i,1074

it appears to converge to the batch perceptron, which consistently performs best.1075

S.2 Theoretical solutions1076

S.2.1 Maximal neural noise robustness1077

To calculate the theoretically highest possible SNR with respect to neural noise, we1078

use the solution for the maximum margin K
⇤(↵, f, q = 2), which we obtain using1079

the maximum load ↵
⇤(K, f, q = 2) and solving for K. The maximum load ↵

⇤ is the1080

solution to Eq. S7 with q = 2, and is provided by Gardner [11] in the form1081

↵
⇤(K,m) =

1

2

2

664
1
2 (1 +m)

1Z

vm�2K
p

1�m2

D(x)

✓
2K � vmp
1�m2

+ x

◆2

dx

+ 1
2 (1�m)

1Z

�vm�2K
p

1�m2

D(x)

✓
2K + vmp
1�m2

+ x

◆2

dx

3

775

�1 (S48)

where v is given by the solution to the equation1082

1
2 (1 +m)

1Z

vm�2K
p

1�m2

D(x)

✓
2K � vmp
1�m2

+ x

◆
dx

= 1
2 (1�m)

1Z

�vm�2K
p

1�m2

D(x)

✓
2K + vmp
1�m2

+ x

◆
dx

(S49)

and D is the standard normal distribution1083

D(x) =
exp(� 1

2x
2)

p
2⇡

(S50)

andm is the pattern magnetization, which simply reflects the activity level f according1084

to1085

m = 2f � 1 . (S51)

In the specific case of balanced patterns (f = 0.5), Eq. S48 is evaluated at m = 0 and1086

reduced to1087

↵
⇤(K, 0) =

1

2

2

4
1Z

�2K

D(x)(2K + x)2 dx

3

5
�1

. (S52)

Note that both ↵
⇤ and K have been adjusted with a factor 1

2 relative the origi-1088

nal solution by Gardner. This accounts for the fact that we allow only non-negative1089
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weights [93] and use pattern-values in {0, 1}, while the original solution was derived1090

for unconstrained weights and patterns in {±1}. The SNR is now computed as1091

SNR⇤ =
Signal⇤

Neural noise⇤
=

K
⇤

2q
fnoise +

f2
noise
4

� 1�2f
f(1�f)

� (S53)

where K
⇤

2 is shorthand for K⇤(↵, f, q = 2).1092

S.2.2 Maximal synaptic noise robustness1093

Single-factor synapses1094

In the case of z = 1, synaptic noise depends on the fraction of non-pruned weights fw1095

(see Methods). In order to compute the highest possible SNR with respect to synaptic1096

noise, it is therefore necessary to derive the fraction of weights that a sign-constrained1097

linear classifier exhibits at K
⇤

2 . We denote this optimal fraction f
⇤

w(↵, f, q = 2). At1098

activity level f = 0.5, this is, in fact, known to be exactly 50%, regardless of storage1099

load [83]. Given a weight norm kwk2, the optimal signal can, according to Eq. S4, be1100

written as Signal⇤ = K
⇤

2kwk2, which gives us the maximal SNR1101

SNR⇤

(z=1) =
Signal⇤

Synaptic noise⇤
=

K
⇤

2kwk2
�noise

p
Nffwi

=
2K⇤

2kwk2
�noise

p
N

(S54)

where the last equality is obtained by inserting f = f
⇤

w = 0.5.1102

Two-factor synapses1103

In the case of z = 2, we can compute the highest possible SNR with respect to synaptic1104

noise using the solution for the maximum margin K
⇤(↵, f, q = 1), which is obtained1105

from the maximum load ↵
⇤(K, f, q = 1) after solving for K. The maximum load ↵

⇤ is1106

the solution to Eq. S7 with q = 1. This was first published in references 12, 13. Here,1107

however, we use the solution reported by Zhang et al. [16], which is expressed as1108

↵
⇤(K, f) =

2K2
N

�2(v� + v+)2f(1� f)

fF3(v�) + (1� f)F3(v+)

(fF1(v�) + (1� f)F1(v+))2
(S55)

where the variables (x, v�, v+,�) are given by the solution to the system of equations1109

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

F2(x) =

p
2

�

F3(x) =
2K2

N

�2(v� + v+)2f(1� f)

fF1(v�) + (1� f)F1(v+)

fF2(v�) + (1� f)F2(v+)
=

�K2
Np

2�x(v� + v+)f(1� f)

fF2(v�)� (1� f)F2(v+) = 0

v� + v+ > 0

� > 0

(S56)

where we use the auxiliary functions1110
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8
>>><

>>>:

F1(x) =
1
2 (1 + erf(x))

F2(x) =
1

p
⇡
e
�x2

+ x(1 + erf(x))

F3(x) = F1(x) + xF2(x) .

(S57)

This is also used to compute the optimal weight fraction1111

f
⇤

w(↵, f, q = 1) = F1(x) . (S58)

The maximal signal at a given weight norm kwk1 is now given by Signal⇤ = K
⇤

1kwk11112

(see Eq. S4), which yields the maximal SNR1113

SNR⇤

(z=2) =
Signal⇤

Synaptic noise⇤
=

K
⇤

1

�noise

s
kwk1
f

(S59)

where K
⇤

1 is shorthand for K⇤(↵, f, q = 1).1114

S.2.3 Maximal pruning1115

In the limit z !1, our definition of consolidation is equivalent to a maximization of1116

the L0-margin, which, according to Eq. S3, can be formulated as a minimization of the1117

number of observable weights kwk0 relative the signal. This, in other words, describes1118

the maximum fraction of weights that can be pruned by a neuron, without losing1119

any of the stored patterns. In order to compute this, we turn to the optimal storage1120

definition in Eq. S7 and supplement it with an additional constraint that requires the1121

optimum to have a desired weight fraction fw. The result is a new storage optimization1122

argmax
w,Iinh

↵ with K, f, q, fw = const. (S60)

whose solution now is described by the maximal storage load ↵
⇤(K, f, q, fw). The value1123

of ↵⇤ that is attained at the smallest possible margin, that is K = 0, is the critical1124

capacity1125

↵
⇤

c(f, fw) = ↵
⇤(0, f, q, fw) . (S61)

Note, again, that this function is independent of q, as the zero-margin solution is the1126

same for all q. The highest degree of pruning is now determined by the lowest possible1127

fw at a given ↵c. We obtain this by solving for fw in Eq. S61 and write it as the1128

function1129

f
⇤

w(↵c, f) . (S62)
In the case of balanced patterns, f = 0.5, a derivation of ↵⇤

c(f, fw) can be found in1130

the work by Bouten et al. [82]. The result is1131

↵
⇤

c(fw) = 2fw +
2p
⇡
erfc�1(2fw) · exp

⇥
� erfc�1(2fw)

2
⇤

(S63)

where ↵
⇤

c has been adjusted with a factor 1
2 relative to the original solution in order1132

to account for the sign-constrained weights [93]. We have also scaled f
⇤

w with a factor1133

1
2 relative to the original solution. We motivate this with a symmetry argument: The1134

original, unconstrained solution always has a weight distribution that is symmetric1135

and centered at zero, with an equal number of positive and negative weights [82].1136

Intuitively, it is therefore reasonable to expect that a sign-constraint causes precisely1137

half of all weights to have the wrong sign and to be pruned to zero. This has, indeed,1138

been proven to be true at maxfw ↵
⇤

c(fw) = 1 [83], where we have1139

argmax
fw

↵
⇤

c(fw) = 0.5 (S64)

and we conjecture that the same applies for all ↵c.1140
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S.3 Derivation of sparseness1141

In the main text, we define sparseness as1142

Sparseness :=
V[r]
E[r2] . (S65)

In practice, this metric is applied to a sample of neural stimulus responses, acquired1143

either from simulations or biological experiments. In this case, we replace the variance1144

and expectation with the unbiased sample estimates, so that1145

Sparseness =
n

n� 1
·

1
n

P
r
2 �

�
1
n

P
r
�2

1
n

P
r2

=
n

n� 1

 
1�

�P r
n

�2
P r2

n

!

=
1�A

1� 1/n

(S66)

where n is the number of samples and1146

A =

�P r
n

�2
P r2

n

. (S67)

This is the way sparseness is formulated in the literature [85, 86].1147

S.4 Extended synaptic noise analysis1148

As observed in the main text, datasets with smaller sample sizes and longer sampling1149

intervals have a scaling exponent that generally increases for depression and decreases1150

for potentiation (i.e., it diverges). This is particularly evident in the case of the longest1151

sampling intervals (�t � 48 h; Fig. 5c, third group of data) where the exponent is1152

0.38±0.04 for potentiation, and higher than one (1.09±0.03) for depression, consistent1153

with previous analyses of this type [70].1154

To further verify these observations, we artificially decrease the sampling frequency1155

in each dataset by sub-sampling measurements across time. More specifically, instead1156

of extracting all weight changes over the original sampling interval �t, we select only1157

weight changes between two measurement separated by an interval �tsub = n · �t,1158

where n = 2, 3, . . . , nmax, and nmax ·�t is the total length of the experiment. We then1159

re-compute the scaling exponent as a function of the new sampling interval �tsub1160

(Suppl. Fig. S7). Results within datasets corroborate those across datasets: as the1161

sampling interval increases, the exponent diverges from ⇠0.6, by going above one for1162

synaptic depression and decaying close to zero for potentiation. These same trend is1163

found in the simulated data.1164
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S.5 Simulation parameters

Table S1 Simulation parameters for Figures 2 and 4.

Parameter z = 1 z = 2 z = 3 z = 4

ḡ 10�4 5⇥ 10�3 7⇥ 10�3 7⇥ 10�3

ḡinh 10�3 5⇥ 10�3 7⇥ 10�3 7⇥ 10�3

ū/z 10 20 50 50*
�̄ 100 100 100 100

*This is for f = 0.5. In simulations with f < 0.5, we use ū/z = 100.

Table S2 Simulation parameters for Figure 3. During
sleep, the learning rate increases exponentially with a time
constant of 40 replay cycles (t denotes the cycle).

Parameter Value

ḡwake 0.017
ḡ [1 + 39 · (1� exp(�t/40))]⇥ 10�2

ū/z 70
�̄ 20

Table S3 Simulation parameters for
Figures 5 and 6.

Parameter Value

�noise 0.05
u0 0.1
⌧ 30
dt 0.005

Tsample 1
Tsim 1000
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S.6 Metadata for synaptic imaging

The following three tables contain details about the experimental data used to produce
Figures 5, 6, and S7.

Table S4 Description of synaptic data with large sample sizes and short sampling intervals.

Ref. System �t Measure Condition Datapoints1 Weight (%)

64
Rat Ctx
culture

1 h PSD95 FI
silent
ctrl

45 600 (43 890)
39 677 (43 016)

30.3 (30.5)
29.0 (35.4)

63
Rat Ctx
culture

30min PSD95 FI ctrl 25 847 (25 845) 27.8 (19.3)

65
Mouse Ctx
culture

25min
PSD95 FI
Munc13 FI

ctrl
ctrl

9536 (10 347)
9545 (10 353)

6.4 (8.9)
6.5 (5.8)

Abbreviations: Ctx = cortex, ACtx = auditory cortex, BCtx = barrel cortex, MCtx = motor
cortex, VCtx = visual cortex, PC = pyramidal cell, ad = apical dendrite, FI = fluorescence intensity,
SH = spine head, ctrl = control, WT = wild-type, KO = knockout, EE = environmental enrichment.
1Total number of (�ŵ, ŵ)-pairs. This is determined by the number of imaged synapses and the
number of imaging sessions. Left column for potentiation (�ŵ > 0) and right for depression (�ŵ < 0).

Table S5 Description of synaptic data with small sample sizes and short to medium sampling
intervals. Notation as in Table S4.

Ref. System �t Measure Condition Datapoints Weight (%)

29
Mouse MCtx
L2/3 PC
in vivo

7 h
GluA1 FI

SH FI

sleep
wake
sleep
wake

1039 (1270)
346 (405)

1107 (1202)
371 (380)

30.2 (28.2)
9.8 (7.6)

22.3 (19.5)
7.7 (4.9)

67
Mouse VCtx
L5 PC-ad
in vivo

10min SH FI
WT
Fmr1-KO

238 (237)
714 (719)

3.8 (2.9)
16.0 (17.1)

69
Mouse VCtx
L5 PC-ad
in vivo

30min
PSD95 area

SH area

EE
ctrl
EE
ctrl

169 (280)
105 (228)
237 (215)
161 (169)

2.6 (8.6)
1.4 (6.5)
4.3 (2.4)
1.9 (2.4)

Table S6 Description of synaptic data with long sampling intervals. Notation as in Table S4.

Ref. System �t Measure Condition Datapoints Weight (%)

661
Mouse BCtx
L2/3/5
in vivo

96 h Bouton FI ctrl 12 829 (12 773) 72.0 (57.3)

52
Mouse ACtx
L5 PC-ad
in vivo

96 h SH FI ctrl 2459 (2552) 16.5 (31.3)

67
Mouse VCtx
L5 PC-ad
in vivo

48 h SH FI
WT
Fmr1-KO

350 (404)
417 (461)

4.7 (4.2)
6.0 (6.4)

68
Mouse MCtx
L5 PC-ad
in vivo

72-96 h SH area ctrl 168 (244) 0.8 (0.8)

1We included only measurements for which the bouton detection probability was >90%.
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S.7 Supplementary figures
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Fig. S1 Simulated consolidation with low-activity patterns. The same type of results as
Figure 2 but with f = 0.1. (a) SNR with respect to noise scaling q, at ↵/↵c = 0.08 (mean over 103

neurons). Weights are normalized to
P

j w
q
ij = 1 and the maximal SNR, for a given q, is scaled to one.

(b) Connection density. Dashed line corresponds to theory for z = 2. (c) Distribution of weights (mean
scaled to 10�1). (d) SNR with respect to neural noise (q = 2; left) and highest level of tolerated neural
noise in tests of pattern recall (right). Dashed line corresponds to theory for z = 1. (e) SNR with respect
to synaptic noise (q = 2� 2/z; left) and highest level of tolerated synaptic noise in tests of pattern recall
(right).
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Fig. S2 Empirical robustness evaluation. The fraction of memories that can be successfully
retrieved (i.e., recall rate) as a function of (a) neural noise and (b) synaptic noise, in networks with
pattern activity levels f = 0.5 (blues) and f = 0.1 (greens). Crosses indicate where the recall rate falls
below 50%. This defines the highest level of tolerated noise.
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Fig. S3 Ablated consolidation model. Connection density (top) and SNR with respect to neural
noise (bottom) after consolidation with ablated (gray) and intact (blue) consolidation model. All markers
correspond to means over 103 neurons, but circles indicate cases where the network manages to find a
solution with E = 0 in 2⇥ 106 replay cycles, while crosses indicate cases where the network fails to find
such solutions. (a) Consolidation without homeostatic scaling. With the exception of z = 2, the network
fails to converge to any meaningful results. Simulation parameters as in Figure 2. (b) Consolidation
with homeostatic scaling but only single-factor synapses (i.e., z = 1). Due to the multiplicative projected
gradient ascent, the solution either coincides with the intact z = 1 solution, or, once again, fails to
converge to anything meaningful. Simulation parameters as in Figure 2, but with learning rates ḡ = 10�4

and ḡinh = 10�3.
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Fig. S4 Memory formation and stabilization in wakefulness and sleep. Simulation of wake-
fulness (yellow background) and sleep (violet background) with high load (black; ↵ = 0.44) and low load
(gray; ↵ = 0.2). (a) Relative SNR (top) and weight density (bottom) over replay cycles. Solid curves
represent neural noise (q = 2) and dashed curves synaptic noise (q = 1). Scaling of the SNR-axis is
arbitrary. (b) Top panel shows the pairwise Pearson correlation between subsynaptic components uijk

within the same weight (same j, di↵erent k) and across di↵erent weights (same k, di↵erent j). Bottom
panel shows the weight trace for a subset of synapses. (c) Maximum tolerated neural and synaptic noise
before and after sleep.
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Fig. S5 Comparison of dense and sparse consolidation. Simulation of wakefulness (few-shot
learning) and sleep (consolidation) in a network with z = 2 (sparse; left) and z = 1 (dense; right), with
low-activity patterns f = 0.05 at ↵ = 0.44. (a) Distribution of pre-sleep and pruned weights. The degree
of pruning is lower in the dense case than in the sparse case. Consequently, the distribution of pruned
weights no longer overlaps with the distribution of pre-sleep weights. (b) Connection probability as a
function of response correlation. The dense network, which always converges to solutions with roughly
50% connection probability, cannot reproduce the low level of connection probability observed in rodent
visual cortex [53] (blue).
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Fig. S6 Extended synaptic fluctuation data. (a) Absolute weight change as a function of initial
weight in simulated data with z = 1 (left), z = 2 (middle), and z = 5 (right), for potentiation (orange)
and depression (blue). Solid lines are moving averages, and dashed lines are linear fits to the solid lines
(slope value shown in upper left corner). The straight solid lines suggest a power-law in the original data,
and their slope (i.e., the power-law exponent) approximately obeys the scaling law q = 1 � 1/z. The
identity line (gray) has slope 1, and is included for comparison. (b) The same type of plot as in a, but
for experimental measurements of dendritic spine sizes in cortical neurons, across di↵erent datasets. The
sampling time is denoted with �t.
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Fig. S7 Synaptic noise scaling in subsampled data. The scaling exponent of synaptic fluctua-
tions as a function of the sampling interval �tsub, in simulated and experimental data [52, 63–66] (mean
± SE, estimated as in Fig. 5). The sampling interval is artificially lengthened by sub-sampling data-
points across time. The scaling exponent generally diverges by increasing for depression (blue markers)
and decreasing for potentiation (orange markers).
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Fig. S8 Comparison of the max-margin and max-storage formalisms. (a) Storage load ↵ as
a function of margin K2, shorthand for K(q = 2). The optimal storage curve is the function ↵⇤(K, f, q)
with f = 0.5 and q = 2, as reported by Gardner [11]. This is obtained by solving the storage problem
in Eq. S7, where ↵ is maximized, given a fixed margin (pink arrow) in the mean-field limit. The same
optimal storage configuration can also be found by solving the corresponding max-margin problem in
Eq. S6, where K instead is maximized, given a fixed load (brown arrow). This is what our consolidation
model is derived to do. Indeed, it retrieves the solution when z = 1, as this maximizes K2, but not when
z = 2, as this maximizes K1. (b) Storage load ↵ as a function of margin K1, shorthand for K(q = 1).
The optimal storage curve is the function ↵⇤(K, f, q) with f = 0.5 and q = 1, as formulated by Zhang
et al. [16]. Using our consolidation model, we now find the optimal storage solution when z = 2, as this
maximizes K1, but not when z = 1, as this maximizes K2. The simulation results are the same as in
Figure 2.
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Fig. S9 Dense and sparse consolidation in neural state space. In a network of N = 3
neurons, we consider a single neuron i and observe the state space of its two neighboring neurons. The
weight vector wi = (w1, w2) and the inhibition Iinh,i define a linear classification boundary (green) that
separate all patterns (circles) according to the labels ⇠i = 1 (white) and ⇠i = 0 (purple). For the sake
of simplifying the illustration, we use real-valued patterns, but the same argument holds for the binary
case. (a) Consolidation with z = 1 is equivalent to a maximization of the L2-margin, which means
that the L2-distance between the boundary and the nearest patterns is maximized (red circles). The
solution is typically dense, which means that w⇤

1 , w
⇤
2 > 0. (b) Consolidation with z = 2 is equivalent

to a maximization of the L1-margin, which means that the L1-distance between the boundary and the
nearest patterns is maximized [89] (red squares). The boundary is now forced to align with the one of
the coordinate axes, thus rendering the solution sparse, such that w⇤

1 = 0 and w⇤
2 > 0.
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Fig. S10 Dense and sparse consolidation in the loss landscape. (a) The landscape of the
objective function Q(w1, w2) (blue; lighter hues closer to max) together with the feasible set under
constraints of type kwkq = 1 (orange curves). In general, a lower q pushes the optimal weight vector
(star) closer to a sparse configuration, in which w⇤

1 = 0 and w⇤
2 > 0. Indeed, for q < 2

3
, the solution is

sparse. (b) Projected gradient descent in the Q-landscape involves first a gradient step (solid arrow),
followed by a projection to the feasible set (dashed arrow). The projection can be multiplicative (q = 2),
additive (q = 1), or a hard thresholding (q = 0). However, for fractional norms (0 < q < 1), the projection
is generally anisotropic, which means that weights are adjusted by di↵erent amounts, depending on their
relative size to each other. (c) We can make the projection to any fractional norm curve multiplicative,
by performing the optimization in the re-parameterized landscape Q(uz

1, u
z
2), if we choose the number

of components z = 2/q. For example, projections to kwk 2
3
(orange curve) become multiplicative with

z = 3. The optimum remains sparse, with u⇤
1 = 0 and u⇤

2 > 0.
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Fig. S11 Consolidation with slow and fast gating function decay. (a) Di↵erence in neural
noise SNR between the theoretical optimum and the solution found by consolidating with z = 1 and
varying �-values, in a single neuron (lower is better). The orange curve represents “wakeful” learning,
where patterns are presented in random order and weights are updated with �wij = ḡ(⇠µi � f)⇠µj . Light
blue curves represent our consolidation algorithm. The dark purple curve represents our consolidation
in the limit � ! 1, which is equivalent to the batch perceptron [81]. The dashed line indicates where
the simulation crosses SNRsim = 0, which is where E = 0 is reached. Scaling of the ordinate is arbitrary.
Simulation parameters: ḡ = 10�4, w̄ = 1, and Iinh = 8.5 for f = 0.5 (Iinh = 1.4 for f = 0.05). (b)
Qualitative comparison of the shape of the gating function g, for the di↵erent variants of consolidation.
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