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Abstract10

‘Why are we curious?’ has been among the central puzzles of neuroscience and psychology11

in the past decades. Recent ‘top-down’ theories have hypothesized that curiosity, as a desire12

for some intrinsically generated rewards (e.g., novelty), is the optimal solution for survival in13

complex environments where we have evolved. To formalize and test this hypothesis, however,14

it is necessary to understand the relationship between (i) intrinsic rewards (as drives of curios-15

ity), (ii) optimality conditions (as objectives of curiosity), and (iii) environment structures.16

Here, we demystify this relationship through a systematic simulation study. We first pro-17

pose an algorithm for generating environments that capture key abstract features of different18

real-world situations. Then, within these environments, we simulate different artificial agents19

seeking six representative intrinsic rewards (novelty, surprise, information gain, empower-20

ment, MOP and SPIE) and evaluate their performance regarding three potential objectives21

of curiosity (environment exploration, model accuracy and uniform state visitation). Our re-22

sults show that the comparative performance of each intrinsic reward is highly dependent on23

the structural features of environments and the objective under consideration; this indicates24

that ‘optimality’ in the top-down theories of curiosity needs a precise formulation of the cu-25

riosity objective and the environment structure. Nevertheless, we found that agents seeking a26

combination of novelty and information gain always achieve a close-to-optimal performance;27

this proposes novelty and information gain as two principal axes of curiosity-driven behavior.28

These results, collectively, pave the way for the further development of computational models29

of curiosity and design of theory-informed experimental paradigms.30
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Introduction31

Curiosity drives humans and animals to explore their environment and acquire knowledge about32

what appears to be new, puzzling, or strange (Berlyne, 1966; Gottlieb and Oudeyer, 2018; Kidd33

and Hayden, 2015; Modirshanechi et al., 2023b): Human babies prefer playing with toys that34

have surprising features (e.g., a car that passes through a solid wall) over normal toys (Stahl and35

Feigenson, 2015), monkeys look at novel visual stimuli longer than those they have seen before36

(Ghazizadeh et al., 2016; Ogasawara et al., 2022), rats prefer to explore mazes with complex37

structures than those with simple layouts (Montgomery, 1954), and mice have a higher breathing38

frequency when sniffing a new odor than a familiar one (Morrens et al., 2020). Mysteriously,39

the drive of curiosity can even occasionally overwrite primary needs such as for safety or food40

(FitzGibbon et al., 2020), e.g., human adults take the risk of receiving an electric shock only to41

know the secret of a magic trick (Lau et al., 2020), and monkeys give up juice rewards in return42

for the information of future reward (Bromberg-Martin et al., 2024). These observations have43

been among the central puzzles of neuroscience and psychology in the past decades1, yet curiosity44

and its neuronal underpinning have remained mysterious and debated (see Forss et al. (2024);45

Modirshanechi et al. (2023b); Monosov (2024); Poli et al. (2024) for recent reviews).46

From a theoretical perspective, there are two principal questions regarding curiosity: ‘Why are47

humans and animals curious?’ and ‘What are they exactly curious about?’ (Modirshanechi et al.,48

2023b). Modern theoretical attempts to address these questions use intrinsically motivated Re-49

inforcement Learning (RL) framework (Baldassarre and Mirolli, 2013; Barto, 2013) and describe50

curiously-driven actions as those directed towards seeking an intrinsically generated ‘reward’ signal51

(Modirshanechi et al., 2023b; Murayama, 2022; Murayama et al., 2019; Oudeyer, 2018; Poli et al.,52

2024). In this framework, the answer to the ‘What’ question is given by the intrinsic reward (e.g.,53

novelty or surprise of observations) that best describes the exploratory actions of a curious agent,54

as opposed to the extrinsic reward (e.g., the monetary or nutritional value of observations) that55

describes the exploitative actions (Aubret et al., 2019; Ladosz et al., 2022; Oudeyer and Kaplan,56

2009). Given an intrinsic reward signal, the answer to the ‘Why’ question is often given by quan-57

tifying the benefits of the intrinsically motivated actions in terms of the agent’s ability in, e.g.,58

finding valuable sources of extrinsic reward (Gershman and Niv, 2015; Pathak et al., 2017; Singh59

et al., 2010a), gaining knowledge about the environment structure (Dubey and Griffiths, 2019), or60

unsupervised learning of complex skills (Mendonca et al., 2021; Oudeyer and Kaplan, 2009; Sekar61

et al., 2020).62

In several experimental paradigms, intrinsically motivated RL algorithms have been successful63

in addressing the ‘What’ question and describing curiosity-driven and exploratory actions of hu-64

man participants by considering novelty (Modirshanechi et al., 2023d; Xu et al., 2021), surprise65

(Kobayashi et al., 2019), information gain (Horvath et al., 2021; Nelson, 2005), progress rate (Poli66

et al., 2022; Ten et al., 2021a), or empowerment (Brändle et al., 2023; Klyubin et al., 2005) as the67

intrinsic reward signal. However, these studies do not address the paradoxical observation that the68

choice of intrinsic reward differs between different experimental paradigms (Modirshanechi et al.,69

2023b). A potential solution has been proposed by the ‘top-down’ models of curiosity (Modir-70

shanechi et al., 2023b) that consider curiosity as the optimal mechanism for reaching a particular71

objective (the ‘Why’ of curiosity), e.g., finding the most valuable sources of extrinsic rewards in72

a class of environments (Alet et al., 2020; Dubey and Griffiths, 2019; Singh et al., 2010a; Zheng73

1The seminal 1966 paper of Daniel Berlyne on curiosity (Berlyne, 1966) starts with the sentence ‘Animals spend
much of their time seeking stimuli whose significance raises problems for psychology.’
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et al., 2020b). Instead of directly answering the ‘What’ question, these models characterize (i)74

the objective of curiosity and (ii) the class of environments where the curious agent lives. The75

‘What’ of curiosity is determined by the reward signal reaching this objective in the specified class76

of environments. Hence, the observation that the ‘What’ of curiosity is experiment-dependent can77

be because of differences in the optimal strategies for reaching the curiosity objective in different78

experiments (Dubey and Griffiths, 2019, 2020). To advance our theoretical understanding of cu-79

riosity, it is hence necessary to understand the relationship between different (i) intrinsic rewards,80

(ii) objectives of curiosity, and, importantly, (iii) environment classes.81

In this study, we aim to demystify this relationship. Specifically, we first design an algorithm for82

generating various environments with principally different characteristics, e.g., number of states,83

stochasticity of transitions, distribution of between-state connections, etc. We then formally define84

three performance measures as potential objectives of curiosity: (i) how fast a curious agent85

discovers all states of its environment, (ii) how accurately it learns the structure of the environment,86

and (iii) how uniformly it explores all the states. We then simulate different curious agents and87

quantify the merits of six representative intrinsic rewards (novelty, surprise, information gain,88

empowerment, maximum occupancy principle, and successor-predecessor intrinsic exploration) for89

maximizing these performance measures in different environments.90

We show that, almost always, seeking information gain is the best strategy for the first two91

performance measures, whereas seeking novelty is the best strategy for the third. Building upon92

this observation, we show that an agent that seeks a combination of information gain and novelty93

can reach a close to the best performance for all three performance measures and in all classes94

of environments. This finding proposes information gain and novelty as two principal axes of95

curiosity-driven behavior (consistent with recent experimental findings, e.g., Dubey and Griffiths96

(2019); Monosov (2024); Poli et al. (2022)). Importantly, however, our results show that the relative97

performance of different intrinsic rewards is highly dependent on the structure of the environment.98

Finally, we show that our environment-generating algorithm proposes a novel approach to designing99

experimental paradigms where seeking different intrinsic rewards results in maximally different100

exploration strategies. These paradigms can be used in future experimental studies of curiosity in101

humans and animals (e.g., as in Modirshanechi et al. (2023d)).102

Results103

General framework104

To study the behavior of curious agents, we use the intrinsically motivated RL framework. In this105

framework, each curious agent learns to navigate an environment represented by discrete states106

and transitions, where states represent specific locations within the environment, and transitions107

describe the agent’s movement from one state to another as a result of its actions. Each transition108

is associated with a reward signal that guides the agent’s action selection. Traditional RL relies109

on fixed, external rewards to shape the agent’s behavior (Sutton and Barto, 2018). In contrast,110

intrinsically motivated RL uses internal reward signals that are non-stationary and evolve based111

on the agent’s experience (Barto, 2013; Singh et al., 2010b). These intrinsic rewards encourage112

the agent to explore and learn from the environment without relying on external rewards.113

We assume that the agent starts with no prior knowledge of the structure of the environment and114

builds a model of the environment by interacting with it. Specifically, we assume that the agent115
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uses Bayesian inference (similar to Liakoni et al. (2022); Meyniel et al. (2016); Xu et al. (2021)) to116

estimate each transition probability P (s′|s, a) (i.e., the probability of reaching state s′ from state s117

by taking action a) for every state s, action a, and the next state s′. As a result, the agent counts118

transitions and constructs its environment model as119

P̂ (t)(s′|s, a) =
C

(t)
s,a→s′ + ϵ

C
(t)
s,a + |S| · ϵ

, (1)120

where S denotes the set of all states, |S| denotes the number of states, t is the current time step,121

C
(t)
s,a→s′ is the count of the transition s, a→ s′ up to time t, and C

(t)
s,a is the number of times action122

a has been taken from state s up to time t. The parameter ϵ > 0 acts as a prior, preventing unseen123

transitions from being assigned a probability of zero (see Hyper-parameters selection for details).124

Then, using its model of the environment, the agent computes Q-value Q(s, a) as an estimate of125

the expected future intrinsic rewards that the agent can collect, by taking action a at state s. The126

Q-values consider both immediate rewards and discounted future rewards and can be computed127

by solving the Bellman optimality equations (Sutton and Barto (2018))128

Q(t)(s, a) =
∑
s′∈S

P̂ (t)(s′|s, a)
(
R(t)(s, a, s′) + λmax

a′∈A
Q(t)(s′, a′)

)
, (2)129

where R(t)(s, a, s′) is the intrinsic reward for transitioning from s to s′ via action a, determined130

by the agent’s intrinsic motivation (detailed in Intrinsic motivations detailed), and λ ∈ [0, 1)131

represents the discount factor for the Q-values. The discount factor λ determines how much the132

agent values the future reward compared to the immediate rewards. These Q-values are updated133

using prioritized sweeping (Moore and Atkeson, 1993) with 100 iterations after each observed134

transition to iteratively converge to a solution of the Bellman equation.135

At each time t, the agent’s behavior in state s is described by the action policy π
(t)
s which assigns136

probability π
(t)
s (a) to selecting action a. We assume that the agent uses the Softmax of the Q-values137

as its action policy:138

π(t)
s (a) =

eβQ
(t)(s,a)∑

a′ e
βQ(t)(s,a′)

∈ [0, 1] , (3)139

where β is the Softmax inverse temperature (Sutton and Barto, 2018). This implies that the agent140

will strongly favor one action if it is clearly better than the others (i.e., if it has a much higher141

Q-value than the other actions), but the agent will choose all actions with almost equal probability142

if they all seem equally rewarding (i.e., if they have a similar Q-value).143

Intrinsic motivations144

We consider six types of intrinsic motivation, each defined by a reward function R(t)(s, a, s′) that145

determines the Q-values (Eq. 2) and, accordingly, specifies the agent’s action-policy (Eq. 3). Our146

first four choices of intrinsic rewards are well-established in the psychological literature (i.e., novelty147

(Modirshanechi et al., 2023d; Xu et al., 2021), surprise (Kobayashi et al., 2019), information gain148

(Horvath et al., 2021; Nelson, 2005) and empowerment (Brändle et al., 2023; Klyubin et al., 2005)),149

whereas the other two has been proposed only recently (Maximum Occupancy Principle (MOP)150

(Ramı́rez-Ruiz et al., 2024) and Successor-Predecessor Intrinsic Exploration (SPIE) (Yu et al.,151

2024)). In this section, we provide a brief and conceptual overview of each intrinsic motivation;152
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see Intrinsic motivations detailed for more detailed formulation and further theoretical analyses.153

(i) Novelty rewards the agent for exploring rarely encountered states. Specifically, for a transi-154

tion s, a→ s′, the agent receives a reward that is a decreasing function of the observation frequency155

of s′, i.e., the less frequently the agent has visited s′, the more rewarded it feels by visiting s′.156

(ii) Surprise rewards the agent for experiencing unlikely transitions and encourages exploration157

of actions with uncertain or unexpected outcomes. Specifically, for a transition s, a→ s′, the agent158

receives a reward that is a decreasing function of P̂ (t)(s′|s, a) (Eq. 1), i.e., the less the agent expects159

to visit s′ (conditioned on s and a), the more reward it feels by visiting s′ (after taking a in s).160

(iii) Information gain rewards the agent for reducing (the epistemic) uncertainty about the161

environment by acquiring new information. The reward for observing a transition s, a → s′ is162

determined by the size of update of the agent’s model of the environment, quantified using the163

KL divergence of the updated model from the previous model, i.e., the more the agent updates its164

estimated probabilities (Eq. 1) after transition s, a→ s′, the more rewarded it feels.165

(iv) Empowerment rewards the agent for achieving states where its actions lead to a diverse166

set of predictable outcomes. The reward for observing a transition s, a → s′ is the empowerment167

value of s′, defined in Intrinsic motivations detailed, i.e., the more ‘options’ the agent has at state168

s′, the more it feels rewarded by visiting s′.169

(v) MOP can be seen as a regularized surprise that rewards the agent for experiencing unlikely170

transitions but also for maintaining a high-entropy policy. As a result, it motivates the agent to171

explore a wide range of states and actions and have diverse trajectories. The reward for observing172

a transition s, a→ s′ is a decreasing function of both P̂ (t)(s′|s, a) and π
(t)
s (a). Details on how the173

policy is computed and integrated into the reward definition can be found in Intrinsic motivations174

detailed.175

(vi) SPIE rewards the agent for visiting rare states as well as those that are critical for reaching176

isolated regions. Specifically, the reward for observing a transition s, a→ s′ is determined by the177

difficulty for the agent to reach s′ from all other states except s. This encourages visiting s′ if it is178

easy to reach from s but difficult from the other states; this is the case, e.g., if s′ is in an isolated179

region or if s is a bottleneck state. Here, a state s′ is considered difficult to reach from a state s if180

the agent rarely visits s′ shortly starting from s.181

Performance measures182

While intrinsic motivations guide the agent’s immediate and local behavior, they do not necessarily183

specify the long-term goal of curiosity. On the other hand, the curiosity outcome can be evaluated184

only after a series of actions and across the whole environment, hence it remains unclear what185

are the benefits of seeking different intrinsic rewards for a curious agent. To answer this question186

and quantify the merits of seeking different intrinsic rewards (the ‘What’ of curiosity), we define187

three performance measures that capture the potential ideal outcomes for a curious agent (the188

‘Why’ of curiosity). Our definitions are inspired by previous literature and common intuition on189

the purpose of curiosity:190
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Measure 1: Environment exploration. Curiosity is closely linked to exploration (Kashdan191

et al., 2009; Modirshanechi et al., 2023b; Voss and Keller, 2013). Hence, one key goal of a curious192

agent can be to reach and visit all states in an environment. We measure the success of an agent,193

concerning this goal, by the fraction of unvisited states after a certain number of steps. A successful194

agent minimizes this fraction.195

Measure 2: Model accuracy. Curiosity is often associated with gaining knowledge (Schmitt196

and Lahroodi, 2008; Szumowska and Kruglanski, 2020) and refining internal models (Pisula, 2009;197

Poli et al., 2024; Schmidhuber, 2010). Hence, another main goal of a curious agent can be to build198

the most accurate model of its environment. In our case, the internal model refers to the agent’s199

estimation of the transition probabilities, which should closely approximate the true transition200

probabilities. We measure the success of an agent, concerning this goal, as the difference between201

the estimated transition probabilities P̂ (s′|s, a) and the ground truth after a certain number of202

steps, using Root Mean Squared Error (RMSE). A successful agent minimizes this difference.203

Measure 3: Uniform state visitation. It has been hypothesized that one main goal of curios-204

ity is to find valuable sources of ‘extrinsic’ rewards (Bellemare et al., 2016; Modirshanechi et al.,205

2023b; Pathak et al., 2017). However, since the world is inherently changing (Liakoni et al., 2021;206

Nassar et al., 2010), the successful discovery of sources of rewards requires balanced and frequent207

visitation of all states. Hence, another main goal of a curious agent can be to achieve an even208

distribution of visits across the individual states, in order to avoid a disproportionate concentra-209

tion in certain regions (similarly to Nedergaard and Cook (2023); Tolguenec et al. (2024)). This210

is also in line with observations that repetitive experiences induce boredom in humans (Geiwitz,211

1966) and motivate them to seek new stimuli (Bench and Lench, 2013, 2019). A curious agent212

should similarly avoid staying in the same region for too long. We measure the success of an agent,213

concerning this goal, as the difference between the agent’s state visitation frequency and the uni-214

form distribution (using RMSE) after a certain number of steps. A successful agent minimizes this215

difference.216

Environment generation217

To systematically study the link between intrinsic rewards and curiosity objectives, we need a218

procedure for generating diverse environments with realistic features. In curiosity research, exper-219

imental paradigms are typically unique and hand-crafted, lacking standardized multi-step environ-220

ments. Our goal in this section is to propose an environment generation algorithm that replicates221

the main relevant features of real-world environments as well as the environments commonly used222

in the experimental studies of curiosity (Fig. 1). Common environment structures in experimen-223

tal studies of curiosity are mazes (Behrens et al., 2018; Kosoy et al., 2020; Tolman, 1948) and224

grid worlds (Botvinick et al., 2009; Dayan, 1993; de Tinguy et al., 2024; Piray and Daw, 2021;225

Singh et al., 2010a; Yu et al., 2024; Zheng et al., 2020b). These serve as the foundation for our226

generation algorithm. Additionally, some studies have highlighted the relevance of long-range con-227

nections (Viswanathan et al., 2016), sinks states (Modirshanechi et al., 2023d; Xu et al., 2021)228

and stochasticity (Mehlhorn et al., 2015; Modirshanechi et al., 2023d). Moreover, the number229

of available options has been shown to have an impact on human behavior (Fasolo et al., 2009;230

Mehlhorn et al., 2015; Scheibehenne et al., 2010). Taking these observations into account, our231

algorithm generates environments in three main steps (see Supplementary Section Environment232

generation for details): (i) It creates a maze with a branching structure, (ii) it integrates grid-like233
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rooms within the maze, and finally, assigns each room to one (and exactly one) of the following234

properties:235

• Sink: If a room is assigned to be a sink, then the algorithm introduces additional one-way236

connections from other parts of the environment to this room. A sink room is easy to reach237

from the rest of the environment. As a result, naive exploration strategies may struggle to238

navigate the entire environment without repeatedly falling into the sink. In video games, the239

starting point often acts as a sink state, as dying resets the player to the start. In real life,240

laying on a couch, watching TV, or scrolling on social media can be seen as sink states, as241

they are easy to engage in and may prevent agents from exploring other possibilities.242

• Source: If a room is assigned to be a source, then the algorithm introduces additional one-243

way connections from this room to other parts of the environment. From a source room, it is244

easy to quickly reach any region of the environment. States in a source room have in general245

more available options than the rest of the environment. Real-life examples of source states246

are situations with a wide range of choices, which include being at an airport, choosing a247

dish at a restaurant, buying a house, planning a vacation, or moving to a new city.248

• Stochastic: If a room is assigned to be stochastic, then transitions within the room are249

partly random. Specifically, when an agent selects an action a from a state s within a250

stochastic room, there is a fixed probability that the action will result in the agent moving to251

a random neighbor of s in the room instead of the intended destination of a. Unpredictability252

is common in everyday life, such as when watching TV, interacting with others, or engaging253

in activities where outcomes are not always certain (e.g., gambling or investing in the stock254

market).255

• Neutral: If a room is assigned to be neutral, then none of the aforementioned modifications256

are applied to the room.257

The algorithm receives, as input, a few parameters that specify the properties of the generated258

environments, such as the number of states, the number of intersections and rooms, the room259

sizes, the distribution of room types, and the intensity of the room properties. All parameters are260

described in the Supplementary Material (Table 1).261

Environment types262

Using our environment generation algorithm, we can create various types of environments. We263

focus on five types for most of our results, namely Neutral, Sink, Source, Stochastic and Mixed264

environments. Since the process is non-deterministic, many distinct environments can be produced265

within each type, but they are expected to exhibit similar properties. The environment types266

considered are detailed in Supplementary Table 1. In summary, each environment contains 100267

states, including 4 rooms of 16 states each. Neutral environments contain 4 neutral rooms. Sink268

environments feature one sink room with 50 additional incoming connections. Source environments269

contain one source room with 50 additional outgoing connections. Stochastic environments include270

one stochastic room where actions lead to a random neighbor within the room. Finally, Mixed271

environments consist of one neutral room, one sink room (with 50 incoming connections), one272

source room (with 50 outgoing connections), and one stochastic room.273
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Figure 1: Comparison of environments from the exploration and curiosity literature with similar envi-
ronments generated by our algorithm. The generated environments shown in the figure are exemplar
realization that exhibit similar properties to the literature examples. However, due to the stochastic na-
ture of the generation process, different instances with the same properties could also be produced. Blue
nodes represent states, and edges indicate possible actions to transition between states. Gray edges are
bidirectional. Green edges (originating from a source room) and red edges (leading to a sink room, see
Environment generation) are unidirectional. Mazes are common in multi-step navigation tasks (Kosoy
et al., 2020; Tolman, 1948) and are represented by complex, branching structures. Grid worlds, another
common task type (Botvinick et al., 2009; Singh et al., 2010a; Yu et al., 2024), feature regular, grid-like
structures. Long-range connections, highlighted as interesting in the literature (Viswanathan et al., 2016),
are environments with states that have distant connections. Sink states are those that are easy to reach
but hard to escape (Xu et al., 2021), similar to challenging game environments like Montezuma’s Revenge
(Matusch et al., 2020) where the starting state acts as a sink state since dying resets the player to the
start.
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Figure 2: (Caption on the following page.)
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Figure 2: Results for six intrinsic motivations (+ random), five environment types and three per-
formance measures. Each subplot corresponds to the combination of one environment type and
one performance measure. An exemplar environment is shown for each type. Blue nodes represent
deterministic states, while red nodes correspond to stochastic states. The performance of each
intrinsic motivation was evaluated over 50 different instances of each environment type, with the
average displayed and the shaded areas representing the standard error of the mean. The first 2000
steps of simulation are shown. For performance measure 1, the y-axis represents the percentage
of unvisited states. For measure 2, it displays the RMSE between the estimated transition prob-
abilities and the ground truth. For measure 3, it shows the RMSE between the state visitation
frequencies and the uniform distribution. In each case, a desirable performance is represented by
a lower curve. In each case, the hyperparameter β was optimized for the first 500 steps only.
Environment types: Neutral environments contain 4 neutral rooms. Sink environments contain
one sink room with 50 additional connections leading to it. Source environments contains one
source room with 50 additional connections originating from it. Stochastic environments include
one stochastic room. Mixed environments consist of one neutral room, one sink room, one source
room, and one stochastic room.

Performance analysis across different environments and measures274

To quantify the merits of seeking different intrinsic rewards in different environments, we sim-275

ulated model-based reinforcement learning agents and measured their performance (defined in276

Performance measures) in our five environment types (specified in Environment types).277

Overall, we observe that the novelty-seeking agents (blue in Fig. 2) consistently have the best278

performance according to Measure 3 (uniform state visitation; Fig. 2, right) and are competitive279

on Measure 1 (environment exploration; Fig. 2, left), except in the Mixed environments. On the280

other hand, agents seeking Surprise (orange in Fig. 2) or Information Gain (green in Fig. 2) excel281

on Measures 1 and 2 (Fig. 2, left and middle) but perform consistently worse than novelty-seeking282

agents for Measure 3 (Fig. 2, right). Interstingly, agents seeking Empowerment (red in Fig. 2)283

perform poorly across all scenarios; this is essentially because they avoid unknown regions, which284

are perceived as non-empowering due to uncertainty. As a result, they avoid further exploration285

of the environment and remain in where they initially explored. Agents seeking either of the two286

recently proposed intrinsic rewards, MOP and SPIE (purple and brown in Fig. 2, respectively),287

perform worse than agents seeking surprise, information-gain, or even novelty on Measures 1 and288

2. However, SPIE sometimes outperforms surprise and information-gain on Measure 3, while MOP289

is only better than random agents (pink in Fig. 2) and those seeking Empowerment on Measure 3.290

While the performance of agents seeking each intrinsic reward is fairly consistent across multiple291

environments of the same kind (Supplementary Fig. 7), it varies strongly between environments of292

different types (different rows of Fig. 2). Different environment types affect performance in distinct293

ways: Neutral environments offer a good reference point. As sink rooms are challenging to escape,294

it is also more challenging to explore Sink environments than Neutral environments. As a result,295

Sink environments can more vividly show the differences in the performance of different agents296

(particularly for Measure 3; Fig. 2, row 2, column 3). On the other hand, in Source environments,297

building an accurate model of the environment (Measure 2) requires agents to repeatedly visit the298

source room to test all actions. This benefits Surprise and Information Gain agents, which are299

attracted to unknown actions, but is specifically detrimental for Novelty as it discourages state300

revisitation (Fig. 2, row 3, column 2). Interstingly, in Stochastic environments, Surprise and MOP301
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tend to stay in the stochastic room after learning sufficiently about the environment, resulting in302

poor performance on Measure 3 (Fig. 2, row 4, column 3, see Intrinsic motivations detailed for a303

formal explanation of this asymptotic behavior), whereas the other algorithms do not show such an304

excessive attraction to stochasticity. Mixed environments combine features of previous types but305

display different behaviors. Notably, Novelty performs worse in these environments on measures 1306

and 2 compared to others.307

To go beyond the comparison across environment types, we next evaluated the impact of specific308

environment parameters on agent performance. Specifically, we manipulated the branching rate309

and the number of sink connections (Fig. 3) in an environment inspired by Xu et al. (2021).310

Specifically, we considered a class of environments with 100 states, where 4 states built a single311

sink room, i.e., 96 states were neutral and outside of the room. In this setting, the branching rate312

influences how these 96 states are arranged. At a branching rate of 0, the states are arranged in a313

straight line, whereas at a branching rate of 1, the states are arranged in a tree-like structure (see314

examples in Fig. 3a). Importantly, the performance of different algorithms drastically changes as315

the branching rate increases from 0 to 1 (Fig. 3a). Novelty and SPIE, initially top performers at a316

branching rate of 0, become among the worst as the branching rate increases to 1 in the first two317

measures. This could be explained by the tendency of novelty-seeking agents to choose actions318

that are known to lead to a relatively novel state, s, rather than taking an unknown action in some319

situations (where the expected novelty of the unknown action might be less than that of s). As320

a result, novelty-seeking agents may not explore all possible actions and could miss large parts of321

the environment, especially when the branching rate is 1. Similarly, increasing the number of sink322

connections generally benefits Novelty and SPIE comparatively to other motivations (Fig. 3b). This323

shows that the structure of the environment has a great influence on the comparative performance324

of intrinsic motivations, indicating that results from experiments in one specific environment may325

not generalize well to others. For example, in an environment very similar to the case with a326

branching rate of 0, Xu et al. (2021) found that Novelty to be dominant drive of human exploration.327

Whether this result is environment-independent can be, for example, tested by repeating the same328

experimental task in an environment with a branching rate of 1 (see Modirshanechi et al. (2023d)329

for an alternative replication of the results of Xu et al. (2021)).330

Novelty and information gain as two main axes of curiosity331

In the previous section, we saw that agents seeking different intrinsic rewards exhibit a diverse332

range of performance in different environment types. However, we also observed that the best333

performing intrinsic reward, for every environment type or performance measure, is either Novelty334

or Information Gain (Fig. 2 and Fig. 3). Specifically, by integrating over time (Fig. 4), we observe335

that Information Gain outperforms all other motivations in environment exploration (Measure 1)336

and model accuracy (Measure 2), whereas Novelty is the best reward signal in achieving uniform337

state visitation (Measure 3).338

These results propose that Novelty and Information Gain are two key drives of exploration. To339

further this proposition, we simulated model-based RL agents that use a linear combination of340

Novelty and Information Gain as the reward signal (Fig. 5). Interestingly, we observe that, by341

even having a fixed and equal weight for Novelty and Information Gain (α = 0.5 in (Fig. 5)),342

these ‘hybrid’ RL agents reached close-to-optimal performance in all environment types and for343

all performance measures (Fig. 5). This implies that an agent that can adaptively and on demand344

fine-tune its reward function will always reach the best performance (see Modirshanechi et al.345
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Figure 3: Performance variation of each intrinsic motivation as a single environment parameter is changed.
The environment, inspired by Xu et al. (2021), contains one sink (trap) room with 4 states and 96 other
states. The parameters used to generate the environments can be found in Table 1. The exemplar
environments shown are smaller versions (50 states), for illustration purposes. To compute the score for
a given environment, we run the agent as in Fig. 2 and calculate the area under the curve (AUC) of each
measure over 2000 steps of simulations. The score for each environment type is obtained by averaging this
value over 50 environment instances. (a) The parameter changed is the branching rate: at a branching
rate of 0, the states are arranged in a straight line, while at a branching rate of 1, each state has multiple
actions leading to distinct parts of the environment. In each case, 100 additional connections lead to the
sink. (b) The parameter changed is the number of sink connections, while the branching rate is fixed to
0.
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Figure 4: Average normalized score across environments for each intrinsic motivation, calculated as
follows: for each setup (environment and measure), the score of each intrinsic motivation is computed
as the area under the curve of Fig. 2. These scores are normalized, setting the best-performing intrinsic
motivation to 0 and the worst to 1. Each dot represents the score on one environment type, and the
average score over all environments is displayed. The same experiment was conducted using the KL
divergence instead or RMSE for measure 2 and 3. The results are very similar and can be found in
Supplementary Fig. 8.

(2023c) for a discussion). Importantly, this observation supports the hypothesis that Novelty and346

Information Gain are fundamental axes of curiosity, with each providing distinct benefits (in line347

with recent experimental studies on humans (Dubey and Griffiths, 2019; Monosov, 2024; Poli et al.,348

2022)).349

Dissociating intrinsic motivations350

To gain further insights into how different intrinsic motivations influence exploratory behavior,351

we analyzed exploration patterns of agents seeking different intrinsic rewards within the Mixed352

environment type (environments with one sink, one source, one stochastic, and one neutral room;353

see Environment types).354

Specifically, we quantified the proportion of time that agents spend in different rooms of the355

environments (Fig. 6). Agents with a random policy predominantly remain in the sink room356

due to the difficulty of escaping it through random actions. Novelty-driven agents, on the other357

hand, quickly achieve a near-uniform state visitation frequency. Agents seeking SPIE follow the358

same trend as Novelty-seeking agents, but they learn more slowly than Novelty. After sufficient359

learning, Surprise-driven agents mostly spend time in the stochastic room, which has the highest360

transition uncertainty. Agents seeking MOP behave similarly to Surprise-driven agents, but they361

lean closer to random agents – as MOP also rewards policy entropy. As observed before (Fig. 2),362

agents driven by Information Gain learn effectively, but they eventually trend towards the random363

policy (as Information Gain converges to zero; see Intrinsic motivations detailed). Different from364

all other agents, Empowerment-driven agents do not explore the environment sufficiently to even365

discover all four rooms; they mainly stay within known regions (unknown regions are expected to366

be non-empowering due to uncertainty) which is most of the time the sink room as it acts like an367

attractor. However, once agents driven by Empowerment know the transition probabilities of the368

entire environment (i.e., are aware of the properties of all four rooms), they spend most of their369

time in the source room, which offers the highest empowerment.370
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Figure 5: Combination of Information Gain and Novelty. At each step, the agent receives a weighted
combination of information gain and novelty rewards, as α · Nov + (1 − α) · IG. In green, the agent is
fully motivated by information gain; in blue, it only receives novelty rewards. For each value of α, the
parameter β was optimized separately as in Hyper-parameters selection. The agents were run similarly
as for Fig. 2, and the Area Under the Curve (AUC) after 2000 steps is reported. The results are averaged
over 50 different instances of each environment type. The error bars represent the standard error of the
mean. For each measure, a desirable performance is represented by a lower bar.
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Figure 6: Proportion of time spent in each region of the environment. Agents were run in the Mixed
environment (see Environment types) for 10’000 steps. Each room contains 16 states, and the corridor
contain 36 states. In the ”Learning” phase, agents start without knowledge of the environment and build
a model of it, as in previous experiments. The evolution of the proportion of time spent in each region
during learning is shown, with a window average of 1000 steps. In the ”Learned” phase, the experiment
is repeated but the agent’s model of the environment is fixed to the ground truth to assess for asymptotic
behavior. The proportion of time spent is averaged over the 10’000 steps. Both phases are repeated 50
times and averaged. To allow for a fair comparison, the hyperparameter β is computed as 1

std(r) where

std(r) is the standard deviation of the intrinsic reward r computed over 10’000 steps under a random
policy. The behavior of each intrinsic motivation in the ”Learned” case corresponds to the expected
asymptotic behavior, derived from the reward formulation in Intrinsic motivations detailed.

Overall, these results show that our environment generation algorithm can help to differentiate371

and highlight essential features of various intrinsic motivations. The different exploration patterns372

confirm that different intrinsic motivations lead to unique behaviors, even within the same en-373

vironment. This suggests that our algorithm for environment generation can be used to design374

experiments where behavioral differences between agents seeking different intrinsic rewards are375

most easily detectable. These experiment designs can be used for identifying exploration strate-376

gies in both humans and animals.377

Discussion378

In this study, we aimed to answer key questions about curiosity-driven behavior in humans and379

animals using simulated agents. Using a new environment generation algorithm, we assessed how380

different intrinsic motivations affect exploration in various environments. Our results show three381

main points: First, the performance of curiosity-driven agents depends highly on the structure382

of their environment. Second, information gain and novelty are the two most effective drivers383

of curiosity; information gain helps with exploring and understanding environments better, while384

novelty encourages a more even exploration of the environment. Third, different intrinsic moti-385

vations produce different exploratory patterns. Our environment generator creates settings where386

these differences are clear, making it easy to dissociate between different intrinsic motivations.387

Our contributions can be summarized in two main points, which are developed in the following388
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paragraphs: (i) we demonstrate the significant impact of environment structure on the performance389

of curious agents, and (ii) we introduce an environment generator to facilitate experimental design390

across multiple domains.391

Our first main contribution is the evidence that environment structure significantly affects the392

performance of curious agents. Most recent studies on human curiosity use one or a few environ-393

ments (Brändle et al., 2023; Horvath et al., 2021; Kobayashi et al., 2019; Poli et al., 2022; Ten394

et al., 2021b) to test hypotheses and draw conclusions. Interestingly, the conclusions often vary395

between experiments, suggesting that humans do not seek the same curiosity signals in all sce-396

narios. We address this inconsistency by showing how the environment’s structure influences the397

expected results. An optimal curious agent should not display the same behavior across different398

experiments. This may suggest that the simple strategies exhibited by humans in experiments are399

part of a more complex strategy with different assumptions about the task. While the importance400

of environment structure in exploration behavior has been acknowledged (Mehlhorn et al., 2015),401

it has to our knowledge not been highlighted with such precision and significance.402

Our second major contribution is our proposed environment generation algorithm. This algorithm403

offers several advantages: (i) It simplifies the design of environments to test specific hypotheses.404

For instance, if we want to determine whether an agent (e.g., a human participant) behaves more405

similarly to novelty-seeking or surprise-seeking agents, the environment generator provides a rig-406

orous framework for creating an environment that clearly distinguishes between the two. (ii) The407

algorithm allows for the creation of diverse environments to test agents in various scenarios while408

keeping a common ground for comparison. It helps isolate key parameters that significantly impact409

behavior. In many fields, it is common to use multiple environments to test a method, but these410

environments are often either very similar to one another (Kosoy et al., 2020; Yu et al., 2023; Zheng411

et al., 2020a), lacking generalization, or very different (Matusch et al., 2021; Piray and Daw, 2021;412

Singh et al., 2010b), making comparisons and interpretation difficult due to a lack of common413

ground. A parameterized environment representation helps generate various environments while414

maintaining a common basis for comparison. Additionally, the stochastic nature of the algorithm415

smooths out minor environmental details, ensuring that only relevant features significantly impact416

the results. For instance, in a fixed environment, we cannot be certain that observed results are417

due to the main feature of interest rather than an unrelated detail. With a stochastic environment418

generator, such details can be averaged out, ensuring that only relevant features significantly im-419

pact the results after multiple runs. (iii) The environment generator can serve as a valuable tool in420

other domains. For instance, it can be used for benchmarking in different areas, such as comparing421

model-based versus model-free approaches, or for developing and testing meta-learning algorithms.422

This flexibility enhances its utility across various research contexts, making it a powerful tool for423

experimental design and evaluation.424

We used model-based RL to assess curiosity-driven behavior. It remains to be explored whether425

our findings hold true in other setups, such as model-free RL. Additionally, we did not consider426

scenarios where external rewards are present alongside intrinsic rewards. While it is expected427

that combining these two reward types would produce intuitive results, our simulations focused428

exclusively on intrinsic rewards, leaving this aspect unexplored. Another limitation is that all envi-429

ronments in our study were static, with no modifications occurring during the agent’s navigation.430

Certain scenarios or hypotheses may require dynamic environments to better reflect real-world431

complexities. Furthermore, while our environment generation algorithm is expressive, it may not432

capture all real-life scenarios. It serves as an initial step that can be supplemented with additional433
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factors that researchers find relevant. Future research should address these limitations.434

Our findings are aligned with the intuition that humans adapt their exploration strategies to the435

task. Future studies could investigate the conditions under which this adaptation occurs. Such436

research could help clarify how people balance their curiosity-driven exploration with the specific437

goals of a task.438

In conclusion, our study increases the understanding of curiosity by clarifying the roles of different439

intrinsic motivations and how they affect exploration behavior in different kinds of environments.440

Our environment generator is a tool for future research, specifically: experiment design, algorithm441

testing, and meta-learning.442
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Methods443

Intrinsic motivations detailed444

We consider six intrinsic motivations: novelty, surprise, information gain, empowerment, Maximum445

Occupancy Principle, and Successor-Predecessor. Each is described below.446

Novelty447

Novelty, as intrinsic motivation, rewards the agent for exploring unusual states—those encountered
infrequently (Aubret et al., 2019; Bellemare et al., 2016; Ostrovski et al., 2017). We use the same
mathematical formulation as Xu et al. (2021). We define the observation frequency of a state s as

p
(t)
N (s) =

C
(t)
s + 1∑

s′ C
(t)
s′ + |S|

where C
(t)
s represents the number of times state s has been encountered up to time t. The novelty

of a state s is then expressed as a decreasing function of the observation frequency :

R
(t)
Novelty(s) = − log p

(t)
N (s)

Asymptotic behavior: Let Pπ(s) be the long-term observation frequency achieved by a fixed policy448

π. The expected average novelty reward at each step for an agent following π is asymptotically449

equal to450

Es∈S[RNovelty] =
∑
s

Pπ(s) ·RNovelty(s) (4)451

= −
∑
s

Pπ(s) · log(Pπ(s)) (5)452

= H(Pπ), (6)453

where H(Pπ) is the entropy of the state observation frequency. As discount factor λ gets close454

to 1, the policy π that maximizes Q-values in Eq. 2 becomes the same as the policy π that455

maximizes Es∈S[RNovelty] (Puterman, 1994). Hence, an agent focused on maximizing this reward456

will, intuitively and for large discount factors, adopt a policy π that increases the entropy of the457

state observation frequency. This should result in a close to uniform state visitation (Measure 3458

in Performance measures).459

Surprise460

Surprise, as intrinsic motivation, rewards the agent when observing transitions that were antic-
ipated to be unlikely. We follow (Achiam and Sastry, 2017; Barto et al., 2013) and define the
surprise of a transition as its Shannon surprise or surprisal (mod, 2022; Modirshanechi et al.,
2023a):

R
(t)
Surprise(s, a, s

′) = − log P̂ (t)(s′|s, a)

Here, P̂ (t)(s′|s, a) represents the estimated probability of the transition. Higher intrinsic rewards461

are granted for transitions the agent considers improbable.462
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Asymptotic behavior: Over time, the estimated transition probabilities P̂ (s′|s, a) should converge463

to the true probabilities P (s′|s, a). The expected surprise reward obtained for taking an action a464

in state s is465

Es′∈S[RSurprise(s, a, ·)] =
∑
s′

P̂ (s′|s, a) ·RSurprise(s, a, s
′) (7)466

= −
∑
s′

P̂ (s′|s, a) · log(P̂ (s′|s, a)) (8)467

≈
t→∞
−
∑
s′

P (s′|s, a) · log(P (s′|s, a)) (9)468

= H(S ′|s, a), (10)469

where H(S ′|s, a) is the entropy of the next state distribution given action a in state s. This implies470

that, in the long run, the agent will prefer actions that lead to stochastic (uncertain) outcomes, as471

deterministic actions will eventually yield no reward. Therefore, after learning sufficiently about472

the environment, the surprise-seeking agent will focus on stochastic areas of the environment.473

Information gain474

Information gain, as intrinsic motivation, rewards the agent based on the amount of information
it acquires, equivalent to the decrease of uncertainty in the knowledge that the agent has of the
environment (Itti and Baldi, 2009; Oudeyer and Kaplan, 2009; Storck et al., 1995). We use the
formulation also referred to as Postdictive surprise (mod, 2022; Kolossa et al., 2015; Modirshanechi
et al., 2023a). Following a transition, the agent updates its environment model, and the intrinsic
reward is determined by the difference between the updated and previous models. In mathematical
terms:

R
(t)
IG(s, a, s

′) = KL
(
P̂ (t)( · |s, a) || P̂ (t+1)( · |s, a, st+1 = s′)

)
Where KL is the Kullback-Liebler divergence (Kullback, 1997). Here, P̂ (t)( · |s, a) and P̂ (t+1)( · |s,475

a, st+1 = s′) are the estimated probability distributions over next states before and after observing476

the transition s, a→ s′, respectively.477

Asymptotic behavior: Over time, the estimated transition probabilities P̂ (s′|s, a) will converge to478

the true probabilities P (s′|s, a). Therefore, the information gain reward R
(t)
IG(s, a, s

′) for every479

transition will tend to 0 as t → ∞. This implies that the agent will converge to the uniformly480

random policy.481

Empowerment482

Empowerment is a measure of the degree of control or influence an agent has over its environment483

from a particular state (Klyubin et al., 2005; Salge et al., 2013). It’s a way to quantify how much484

an agent can affect or change its surroundings (i.e. the future observed state) based on its actions485

from that state. Formally, the empowerment of a state s is defined as the channel capacity of486

the actuation channel, i.e. the maximum potential information transmission between the agent’s487

actions and the subsequent impact of these actions after a certain duration. Here we consider488
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1-step empowerment, which is defined as:489

E(t)(s) = max
p(a)

I(S ′;A|s) (11)490

= max
p(a)

(H(S ′)−H(S ′|A)) (12)491

= max
p(a)

(H(A)−H(A|S ′)) (13)492

where A and S ′ are random variable for the action and next state, respectively. There are multiple493

ways to intuitively understand this formula. Examining eq.12, we note that in order to maximize494

empowerment, we aim to maximize the entropy of the next state S ′, implying a diversity of potential495

next states. Simultaneously, we seek to minimize H(S ′|A), to reduce stochasticity in the process.496

This conceptually aligns with the desire to have control over the destination when selecting an497

action. An alternative interpretation is found in eq.13. To maximize empowerment, we want to498

maximize H(A) to enable numerous possible actions, while minimizing H(A|S ′) to account for499

the fact that multiple actions may lead to the same state. Essentially, this seeks to maximize500

the count of effective actions—those leading to diverse outcomes. In each case, we consider the501

maximum over all possible action distributions p(a). For an agent driven by empowerment as502

intrinsic motivation, we set R
(t)
Empowerment(s, a, s

′) = E(t)(s′).503

Asymptotic behavior: An agent driven by empowerment will seek out states with a large number504

of available options, as these states offer the most control. In the long run, the agent’s estimation505

of the transition probabilities will converge to the true probabilities. Therefore, the agent will tend506

to stay in the most empowering regions of the environment (e.g. source states) and avoid reaching507

isolated areas with fewer options.508

Maximum Occupancy Principle (MOP)509

Introduced in Ramı́rez-Ruiz et al. (2024), MOP as intrinsic motivation considers that the goal of510

an agent’s behavior is to maximize the occupancy of future action-state paths. The agent aims to511

maximize the return512

RMOP (s, a, s
′) = − log

(
παMOP (a|s)P̂ βMOP (s′|s, a)

)
(14)513

Where the subscript (t) has been omitted for clarity. An agent motivated by MOP is expected to514

favor high entropy policies and highly stochastic regions of the environment. In our experiments,515

we set αMOP = βMOP = 1 to give equal weights to these two aspects. Unlike for other intrinsic516

motivations, we do not compute the policy by applying softmax on Q-values. Instead, we use517

a modified version of value iteration as in Moreno-Bote and Ramirez-Ruiz (2023); Ramı́rez-Ruiz518

et al. (2024) to consider the optimal policy at every step.519

Asymptotic behavior: As detailed in Ramı́rez-Ruiz et al. (2024), MOP aims to find a policy π that520

maximizes the value function Vπ(s) defined as521

Vπ(s) = αH(A|s) + β
∑
a

π(a|s)H(S ′|s, a) + γ
∑
a,s′

π(a|s)P (s′|s, a)Vπ(s
′), (15)522

where H(A|s) is the policy in state s, and H(S ′|s, a) is the entropy of the next state distribution523

given action a in state s. The first term favors states with multiple available actions, the second524
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term encourages to experience stochastic transition and the last term accounts for the value of the525

next state. The agent will aim to reach the states where Vπ(s) is highest. Therefore, after learning526

sufficiently about the environment, we expect the agent to spend most of its time in stochastic527

areas and regions with many actions.528

Successor-Predecessor Intrinsic Exploration (SPIE)529

SPIE was introduced in Yu et al. (2024). Instead of only rewarding the agent for discovering new530

states like Novelty, SPIE also rewards it for visiting states that lead to isolated regions. The key531

idea is to use both forward-looking (successor) and backward-looking (predecessor) information to532

identify and navigate critical or ”bottleneck” states. The reward is defined based on the successor533

representation (SR), which measures how often one state is expected to be visited in the future534

with the current policy, given that the agent is currently in a specific state. The reward is defined535

as:536

R
(t)
SPIE(s, a, s

′) = M̂ (t)[s, s′]− ∥M̂ (t)[·, s′]∥1 (16)537

where M̂ (t)[s, s′] is the learned SR for the state s’ given state s, and ∥M̂ (t)[·, s′]∥1 is the sum of the538

SRs of s′ from all states. Intuitively, the reward is high when state s′ is difficult to reach from all539

states except s. Therefore, if s is a bottleneck state, the reward is high, encouraging the agent to540

visit such states. Unlike the original paper, we do not approximate the matrix M̂ (t)[s, s′] using an541

online TD-learning rule. Instead, we compute it exactly after each observed transition using the542

agent’s environment model.543

Asymptotic behavior: Yu et al. (2024) argues that the behavior of SPIE is non-trivial, even when544

the matrix M is known or fixed. However, since the reward is higher for rarely encountered states,545

we expect the agent to reach a close to uniform state visitation.546

Hyper-parameters selection547

The framework described in General framework contains three hyper-parameters: ϵ, λ and β. The548

parameter ϵ is a small positive constant added to transition counts to prevent zero probabilities for549

unseen transitions, λ is the discount factor that determines the weight of future rewards compared550

to immediate rewards, and β is the Softmax inverse temperature parameter that influences the551

randomness of the action selection based on the Q-values.552

In all experiments, we set ϵ = 1/n and λ = n/2
√
0.5 where n is the number of states in the envi-553

ronment, so that a future reward that is n/2 step away is discounted to half its value. On the554

other hand, β is optimized in a more complex manner. Each combination of intrinsic motivation,555

performance measure, and environment type is referred to as a setup. The inverse temperature556

β was optimized separately for each setup. For instance, in Fig. 2, with 6 intrinsic motivations,557

3 performance measures, and 5 environment regimes, there are 90 setups, requiring 90 optimized558

values for β. The optimization process for each setup is as follows: First, we generate 50 envi-559

ronments based on the chosen type. Then, we find the value of β that gives the best score using560

grid search. To compute the score for a specific choice of β, we run an agent for 500 steps on each561

environment. We evaluate the performance measure every 100 steps and calculate the average,562

resulting in a score for each environment. The overall score is calculated as the average score across563

the 50 environments.564
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Supplementary Material825

Environment generation826

All the parameters used for generating environments are described in Table 1. The environments827

are generated in three steps:828

1. Maze generation: a maze is generated with a given number of states and branching rate. The829

branching rate determines the number of intersections in the environment. The algorithm830

for generating the maze is defined in Algorithm 1.831

2. Room integration: some states in the maze are transformed into rooms. A room is a square832

grid, with each state having four actions to navigate up, down, left or right whenever these833

actions are available (when the state is not on a border). Neighbors of a transformed state834

are connected to the middle of the room borders (maximum 4 neighbors, one for each side835

of the square room). Parameters determine the fraction of states that are transformed into836

rooms and the size of the rooms.837

3. Room properties: Each room is assigned one of sink, source, stochastic or neutral. For838

each sink room, we iteratively sample a state u in the room and a state v outside the room839

uniformly at random, and connect v to u. We repeat until the desired number of edges840

has been added. For each source room, we do the same process but inverse the direction of841

connections. The transition dynamics inside stochastic rooms are altered as follows: when842

an agent selects an action a from a state s within a the room, there is a fixed probability843

that the action will result in the agent moving to a random neighbor of s in the room instead844

of the intended destination of a. Finally, neutral rooms do not receive any modification.845

Algorithm 1 Algorithm to generate the initial maze

Require: n > 0, branch rate ∈ [0, 1]
Q← empty queue
Enqueue(Q, 1)
next state ← 2
while next state ≤ n do

cur state ← Dequeue(Q)
Connect(cur state, next state)
Connect(next state, cur state)
rand ∈ [0, 1] uniformly at random
if rand < branch rate and nneighbors(cur state) < 4 then

Enqueue(Q, cur state) ▷ The current state is put back in the Queue if it does not
already have 4 neighbors

end if
Enqueue(Q, next state)
next state += 1

end while
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Parameter Range Short description
Environment types

Neutral Sink Source Stochastic Mixed Trap (Fig. 3)

ns [1,∞] Number of states in the initial maze. 40 40 40 40 40 97

branch rate [0,1] Probability of creating a new intersec-
tion when adding a state.

0.2 0.2 0.2 0.2 0.2 0→ 1

nroom [0, ns] Number of rooms. 4 4 4 4 4 1

room size [1,∞] Size of the side of rooms. 4 4 4 4 4 2

psink [0,1] Fraction of sink rooms. 0 0.25 0 0 0.25 1

psource [0, 1− psink] Fraction of source rooms. 0 0 0.25 0 0.25 0

pstochastic [0, 1− psink − psource] Fraction of stochastic rooms. 0 0 0 0.25 0.25 0

nedges per sink [0,∞] Number of additional connection leading
to each sink room.

0 50 0 0 50 0→ 200

nedges per source [0,∞] Number of additional connection origi-
nating from each source room.

0 0 50 0 50 0

uncontrollability [0,1] Probability for an action taken in a
stochastic room to lead to a random
neighbor instead of the expected desti-
nation.

0 0 0 1 1 0

Table 1: Summary of all environment parameters used in the generation process. The right side shows the environment types
considered with the corresponding parameter values.
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Robustness of results846

Robustness to change of metrics847

Figure 8: Average normalized score across environments for each intrinsic motivation, computed
as in Fig. 4, but using the KL divergence instead of RMSE for measure 2 and 3. The results are
very similar and the same conclusions can be drawn.
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(a) PCA (b) UMAP with Manhattan distance

(c) UMAP with Canberra distance (d) Multi-class Linear Discriminant Analysis (LDA)

Figure 7: Consistency of performance within each environment type. The environment types are
described in Environment types. Various projections of performance vectors for each environment
are shown. Each dot corresponds to one environment sampled from one of the given types. For
each such sample, a vector of performance is created as follows: we run each intrinsic motivation
for 2000 steps and calculate the Area Under the Curve for each performance measure (same curve
as in Fig. 2). For each environment, we obtain a performance vector of size (nIM ·nmeasures) = (6 ·3)
where nIM is the number of intrinsic motivations and nmeasures is the number of measures. (a) We
apply PCA and display the top two principal components. (b)-(c) We use UMAP with Manhattan
and Canberra distances. (d) We apply multi-class LDA. Clusters are observed in each method.
Sink and Mixed environments consistently overlap, probably due to the presence of sink rooms in
both cases. Neutral and Stochastic environments sre also close, but remain distinguishable in (c)
and (d). This similarity is probably due to the fact that a stochastic room doesn’t change the
environment dynamics as much as sink and source rooms.
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