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Humans and animals can remember how long ago specific events happened. In con-
trast to interval-timing on the order of seconds and minutes, little is known about
the neural mechanisms that enable remembering the “when” of autobiographical
memories stored in the episodic memory system. Based on a systematic exploration
of neural coding, association and retrieval schemes, we develop a family of hypothe-
ses about the reconstruction of the time of past events, consistent with Hebbian
plasticity in neural networks. We compare several plausible candidate mechanism
in simulated experiments and, accordingly, propose how combined behavioral and
physiological experiments can be used to pin down the actual neural implementation
of the memory for the time of past events.

Humans and animals track temporal information on
multiple timescales, to estimate, for example, the loca-
tion of a sound source based on millisecond time differ-
ences of sound arrival at the two ears, the interval du-
ration between the perception of lightning and thunder,
or the days, months and years that have elapsed since
an autobiographical event took place (Addyman et al.,
2016; Buhusi & Meck, 2005; Carr & Konishi, 1990; Ger-
stner et al., 1996; Grothe et al., 2010; Issa et al., 2020;
Paton & Buonomano, 2018; Tsao et al., 2022). For au-
tobiographical memories, recall of the “when” informa-
tion is often an explicit and conscious reconstruction-
based process (Friedman, 1993), for example, “we went
to Turkey the year my sister got married, she is five years
older than me, got married at the age of 30, and I am
now 37 years old, so this must have been 12 years ago.”
However, even without explicit reconstruction, healthy
human adults usually have a good sense of whether a re-
called event happened yesterday, a year ago or decades
ago, and there is evidence for automatic processes, in
particular in young infants without a fully developed
episodic memory system (Friedman, 2013; Jelbert &
Clayton, 2017; Pathman et al., 2013). Also corvids,
rodents, and other species with an episodic-like “what-
where-when” memory can remember the time of past
events on timescales of days to months (Jelbert & Clay-
ton, 2017).

On timescales from milliseconds to minutes, multiple
mechanisms based on changing neuronal activity pat-
terns are known to support accurate interval timing (Ad-
dyman et al., 2016; Buhusi & Meck, 2005; Issa et al.,
2020; Paton & Buonomano, 2018; Tsao et al., 2022).

Less is known about the neuronal mechanisms that sup-
port the recall of the time of past events on much longer
timescales. Memories on these timescales are likely to
rely on synaptic plasticity and possibly on systems con-
solidation (Moscovitch & Gilboa, 2021). Multiple re-
search communities have developed models of episodic
memory to explain recall of past events (Norman et al.,
2008). These models focus on different aspects, like
replicating behavioral data in free or serial recall of lists
(Howard, 2022; Howard & Kahana, 2002; Kahana, 2020;
Kahana, 2012; Katkov & Tsodyks, 2022; Polyn et al.,
2009; Romani et al., 2013), developing attractor neu-
ral networks consistent with anatomical and physiolog-
ical knowledge of the hippocampal formation (Kesner
& Rolls, 2015; Norman & O’Reilly, 2003; Norman et
al., 2008), or explaining systems consolidation (Moscov-
itch & Gilboa, 2021; Remme et al., 2021; Squire et al.,
2015). Although attempts at categorizing different the-
ories have been made (Friedman, 1993; Henson, 1998),
there exists no systematic exploration of computational
models that focus on the time of past events.

Here, we study from a theoretical perspective dif-
ferent neural mechanisms that enable automatic recon-
struction of the time of past events on long timescales.
Whereas theoretical consideration about the representa-
tion of temporal information are in principle relevant for
tracking time on any scale, we focus, in particular, on
settings used to investigate episodic-like memory, where
a stream of sensory inputs on a timescale of days or
months is perceived by an organism that can recall past
events and respond with some actions (Figure 1). Our
goal is to develop concrete hypotheses about biologi-
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Figure 1

A simple setting to study episodic-like memory.
We consider discrete sensory streams, like perceiving a
red triangle at time t1 and a blue square at time t2. In
all illustrations we use color, shape and time as abstract
analogies of the “what”, “where” and “when” of spe-
cific events, respectively. The time points t1, t2, . . . are
not necessarily equally spaced and may be separated by
hours or days. At time t3, the white triangle first triggers
activity in the brain that corresponds to the perception
of a white triangle and, second, activity that corresponds
to remembering the red triangle, including the informa-
tion of how long ago the red triangle was perceived. An
action is performed upon memory retrieval, like saying
“red, two”. In the next time step, a new stimulus can
be given, together with a reinforcement signal (clapping
hands). As a typical example similar to the abstract set-
ting described here, one may think of experiments where
food caching animals learn to retrieve from caches they
made the same day and ignore caches they made a few
days ago (Clayton & Dickinson, 1998). Our goal is
to find neural network dynamics and synaptic plasticity
rules that change the connections between neurons (red
lines) such that the sensory stream can be remembered
and action selection rules that depend on the recalled
event can be learned.

cal neural circuits and Hebbian synaptic plasticity rules
that support this behavior.

Results

Representing Information: the Space of Possible
Codes

The activity in a network of neurons can represent
a memory in multiple ways. For simplicity, we assume

that the “what”, the “where” and the “when” of each
memory are elements of discrete sets, like the sets of
colors, shapes and time points in Figure 1. The value of
such discrete variables can be represented with, (i) the
firing rate of a neuron (rate), (ii) the identity of an ac-
tive neuron within a group of neurons (onehot) or (iii)
the distributed activity pattern in a group of neurons
(distr; see Figure 2A and section “Formal Description
of Codes”). For example, in a rate code of color, the
sight of red and blue objects evokes different activity
levels in the same neuron, whereas in a one-hot code,
different neurons are tuned to different colors. A strict
rate code with a single neuron or a strict one-hot code,
where a given stimulus feature activates a single neuron,
are idealizations that are unlikely to be found in any
brain. Instead, stimulus features may be represented
by a distributed code, where multiple neurons become
active, when perceiving the color “red”, for example.
However, certain distributed codes can be reduced to
rate or one-hot codes by summing the activity of sub-
sets of neurons. Trivial examples are redundant rate or
one-hot codes with groups of identical neurons. Another
example is the population rate code (poprate), where
the number of active neurons encodes the value of a
variable. We use the term “distributed code” only when
such a reduction by summation is impossible.

Representing Time: Timestamp and Age Codes,
Internal and External Zeitgeber

Information about the “when” of an event can be rep-
resented by any code discussed above, as soon as a ref-
erence point for measuring time is defined. We distin-
guish timestamp and age representations (Figure 2B).
In timestamp representations, time is measured rela-
tive to a fixed reference point in time. The fixed ref-
erence point could be the birth of an individual and the
“when” information of an event could be represented as
“5 months since birth”. In timestamp representations of
time, the neural activity representing the “when” infor-
mation during recall of a given event is always the same,
no matter when recall happens; this neural activity code
can thus be seen as representing a timestamp attached
to each memory. Importantly, we do not assume that
this timestamp representation encodes literally the date
and time of an event. In fact, any neural activity pat-
tern can be a timestamp, if it allows to infer the time
of a given event and does not change with the age of
the memory. In contrast, in age representations, time
is measured relative to changing moments in time. The
changing reference point could be the current moment
in time and the “when” information of an event could be
represented as “8 months ago”. In contrast to timestamp
representations of time, age coding implies that the neu-
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Several distinct “what-where-when” memory systems can be constructed by combining specific choices
of the encoding, reference point of time, association, retrieval and readout schemes. A The elements
c1, c2, c3, c4 of a set C can be encoded, for example, (from top to bottom) in a rate code, one-hot code, distributed
code or a population rate code (see Formal Description of Codes). B In timestamp memory systems, time is
measured relative to a fixed reference point and the “what-where-when” information of a specific event is, therefore,
encoded with the same activity pattern at any time of recall t1 or t2. In age memory systems, the retrieved memory
pattern of a given event changes with time, because time is measured relative to a changing reference point. C
Information x and y, about e.g. the content and the time of an event, can be associated in multiple ways; for
example, with concatenation x⊕ y (left) or non-linear mixed codes, like the (outer) product x⊗ y (middle) or random
projection RP(x, y) (right) code. The two-dimensional arrangement of the twelve neurons in the product code is for
visualization purposes; they could also be arranged in a vector with 12 elements. D Memory retrieval can be based
on hetero-associative recall with learned feed-forward synaptic connections (red) or on auto-associative recall with
learned recurrent synaptic connections (red). E The difficulty of learning flexible rules depends on the code. Direct
readout: For one-hot coding, any rule is learnable with direct connections to action neurons. Complex readout:
Learning arbitrary rules based on distributed or rate coding can be achieved with plastic connections in multilayer
perceptrons or complex readout with fixed preprocessing: with hard-wired transformations into, for example, one-hot
codes that allow flexible learning.

ral activity during recall of a given event is not the same
at different moments, because the “when” information
depends on how much time has elapsed between storage
and recall; this neural activity code can thus be seen as
representing the age of each memory. An example of an
age code is shown in Figure 2B, where the elapsed time
between storage and recall is represented by the location
of the activity peak.

We use the term zeitgeber to refer to the process that
generates either timestamps or changes the age code.
Unlike a clock, that is synchronized with physical time,
a zeitgeber may drive the representation of time with

variable speed that depends, for example, on the fre-
quency of events that are worth to be memorized. The
zeitgeber can either be an internal process that runs al-
most autonomously inside the time-perceiving agent or
it can depend mostly on the agent’s interaction with the
external world. Internal zeitgebers can be any biological
process inside the agent with a fairly stable time con-
stant such as ramping or decreasing synaptic strengths,
neurogenesis, spine turnover, the circadian rhythm (in
the absence of exposure to sunlight) or even changes in
satiety, thirst or tiredness level. Examples of external
zeitgebers are processes like the ticking of a clock, the
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day-night cycle or the change of seasons; also processes
that involve the agent’s actions, like changes of context
(leaving or entering a house) or changes of the main
activity (switching from working to eating lunch), could
act as external zeitgebers.

Associating Information: How to Combine
What, Where and When

The be able to remember everything about a given
event, the “what”, “where” and “when” information
need to be associated in some way. In the following, we
assume the “what” and the “where” are given as a con-
tent variable in some code and focus exclusively on how
the content is associated with the “when” information.
The question of associating the “what” (and “where”)
with the “when” becomes the question of building an
“association function” that produces a neural activity
pattern in response to the “when” information on one
side and the encoded content (“what” and “where”) in-
formation on the other side (see section “Formal De-
scription of Association Schemes”).

The number of possibilities to write down such an as-
sociation function is huge, even if we restrict ourselves to
those functions that do not “loose” any information, in
the sense that the content and “when” information can
be faithfully reconstructed from the momentary neural
activity pattern. In the following we focus on three
specific examples of association functions: concatena-
tion, (outer) product and random projection codes (Fig-
ure 2C).

In a concatenation code, neurons can be split into
two separate groups: one representing the “when” in-
formation and the other one the content information
(⊕ in Figure 2C). Closely related is a linear mixed code,
where such a split is not directly possible, because single
neurons contribute to the representation of both content
and “when” information, but a linear transformation of
the neural population activity would allow to represent
the content and “when” information in a concatenation
code. An example of a non-linear mixed code is the prod-
uct code (⊗ in Figure 2C), where the neural population
activity is given by the outer product of the content and
the “when” code. This product code is a special case
of tensor product variable binding (Smolensky, 1990).
Such a product code requires, in general, more neurons
than a concatenation code: if content and “when” in-
formation could be represented separately by N and M
neurons, respectively, their association with a product
code requires N × M neurons, whereas N + M neurons
would be sufficient for a concatenation code. Other non-
linear mixed codes can be constructed with (circular)
convolutions (Kelly et al., 2013) or random projections
(RP in Figure 2C), where the activity of each neuron in

a group depends non-linearly on a randomly weighted
mixture of content and “when” information.

The way a neuronal population represents the associ-
ation of content and “when” information has important
implications for the readout of retrieved memories, as
we will discuss in the next section and demonstrate in
the section “Simulations”.

Storage, Retrieval and Readout of Memories

So far, we considered only the representation of infor-
mation. However, the description of a memory system
is incomplete without a characterization of the storage,
retrieval and readout mechanism.

Retrieval

In the field of neural networks, memory retrieval is
typically implemented with hetero- or auto-associative
memories (Figure 2D). In both, hetero- and auto-
associative networks, the output activity of a neural
network in response to an input cue represents the re-
trieved memory. In a hetero-associative memory, re-
trieval is performed in a single step whereas a recurrent
auto-associative network requires convergence to a fixed
point (Amit, 1989). However, a single update step is
often sufficient to almost reach the fixed point and re-
trieve a memory almost perfectly, in particular in kernel
memory networks (Iatropoulos et al., 2022).

Storage and Retrieval Phases

Most models require separate storage and retrieval
phases. Suppose “red triangle” has already been stored
at time step t1. At time t3, the input “white triangle”
triggers recall of the stored memory, i.e. the neural code
for the “when” information t1 together with the con-
tent information “triangle” and “red” should be accessi-
ble at time t3 and become active while the remembered
event “red triangle” is retrieved from memory (retrieval
phase). At the same time step t3, however, it must also
be possible to store the new event “white triangle”, as
an event that happens at time t3 (storage phase). Sepa-
rate storage and retrieval phases could be implemented
by a periodic process in which external input drives the
memory network during the storage phase and recurrent
connectivity in the memory network dominates during
the retrieval phase. The theta rhythm in the hippocam-
pus, or some modulatory factors, like neurotransmitters,
could drive such a periodic process (Hasselmo et al.,
2002).

Alternatively, the separation into storage and re-
trieval phases could be implemented with synaptic de-
lays: if multiple pathways exist between two groups
of neurons, for example the “input-content” pathway
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and the “input-intermediate-content” pathway in Fig-
ure 3, and if information travels at different speeds
along the different pathways, then stimulus-driven ac-
tivation through one pathway could be used for stor-
age (“input-content” pathway in Figure 3) and through
the other pathway for retrieval (“input-intermediate-
content” pathway in Figure 3). In the simulated models
in section “Simulations” we use this mechanism to dis-
tinguish storage and retrieval phases.

Behavioral Readout

Once a previously stored activity pattern is retrieved,
it can trigger some behavioural output. In contrast to
computer memory, where recall success can be measured
by the number of bits lost between storage and recall,
successful retrieval of a memory in humans and animals
is usually inferred from some behavioural output, which
may have a very different representation than the input
that led to the formation of the memory (e.g. visual
input and vocal output in Figure 1). Therefore we must
include a discussion of action selection that subjects per-
form in response to retrieved memories.

Behavioral rules control which action to perform in
response to a specific retrieved memory. How easily
different behavioural rules can be learned depends on
the representation of recalled memories. This can be
used to design experiments that discriminate between
different kinds of “what-where-when” memory systems,
as we will show in section “Simulations”. For a strict
one-hot code, for example the product of one-hot codes
onehot(content)⊗onehot(age), any behavioural rule that
maps content and age of a recalled event to a given ac-
tion can be learned with direct readout, i.e. plastic con-
nections between the layer of recalled activity to action
neurons (Figure 2E). For distributed or rate coding, di-
rect readout allows learning of some rules, but complex
readout is needed to learn any rule. For example, the
notorious XOR rule (Hertz et al., 1991), where a cer-
tain action is taken if and only if two input neurons are
jointly active or jointly inactive, cannot be learned with
direct readout, but it can be learned with a multilayer
perceptron (Figure 2E). Learning all connections in a
multilayer perceptron can be achieved with the back-
propagation algorithm or biologically plausible variants
thereof (Illing et al., 2019; Lillicrap et al., 2016; Roelf-
sema & Ooyen, 2005), but it is rather slow if learning
happens in an online fashion, where each example is used
just once. An alternative is to rely on fixed weights in
most layers to transform the input into a useful feature
representation and quickly learn flexible mappings with
biologically plausible Hebbian plasticity in the last layer
(Figure 2E).

Storage of white triangle

input

intermediate layer

content

action

→

→
Recall of red triangle

triggered by
white triangle

input

intermediate layer

content

action

→

Figure 3

Example of a Storage and Retrieval Mecha-
nism with Synaptic Delays. Signals take more time
to travel in long pathways with multiple intermittent
synapses than in short pathways, because signal trans-
mission across chemical synapses takes time. There-
fore, multiple pathways of different lengths between two
groups of neurons can be used to separate storage and
retrieval phases. During storage, the input drives the
activity in the intermediate layer; the content layer re-
ceives input through the direct “input-content” pathway
(indicated by yellow arrows). Connections between the
intermediate and the content layer (red dashed arrows)
are selected for growth with a Hebbian plasticity rule.
Shortly thereafter, because of more synaptic delays along
the longer pathway, the content neurons receive input
through the “input-intermediate-content” pathway, i.e.
the intermediate layer is the main input of the content
layer (yellow arrow). Already grown connections (red
arrows) enable recall of previous events. The actual
growth of the connections selected in the storage phase
(dashed red arrows) is not instantaneous and does there-
fore not interfere with the recall phase. Once the content
neurons received input through the “input-intermediate-
content” pathway, the content layer drives the action
selection through weights that implement some learned
rule (orange arrows).
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The Context-Tagging model: Timestamp Tag-
ging with Auto-Associative Retrieval and Com-
plex Readout. A The events “red triangle” and “blue
square” were observed at times t1 and t2, respectively.
At time t3 the event “white triangle” is observed. B
During storage, the current context (activity in layer
“now”) drives the “tag” neurons (yellow arrow) such
that content and context can be bound together (dotted
red lines). C Subsequently, the previously grown synap-
tic connections (red lines) allow auto-associative recall of
the event “red triangle”. During recall, the tag neurons
are no longer driven by input from the “now” neurons,
but, through auto-associative recall (yellow arrow), the
activity of the tag neurons encodes the context at time
t1. The comparison of the current context (represented
by the “now” neurons) with the recalled context (repre-
sented by the “tag” neurons) allows the readout network
to estimate the age of the retrieved memory. Conse-
quently, behavioural rules that depend on the age of the
recalled memory can be learned (orange weights).

Synaptic Plasticity

Long-term synaptic changes are presumably involved
for memorization in the storage phase, for learning ac-
tions to indicate successful retrieval and to reflect the
passage of time in age representations of time.

If pre- and postsynaptic neurons are jointly active
during the storage phase, Hebbian synaptic plasticity
is sufficient to memorize and generate a trace of the
event in the memory system. Behavioural rules that
depend on the content and the age of recalled memories
could be learned with neoHebbian synaptic plasticity
(Gerstner et al., 2018; Kuśmierz et al., 2017; Lisman
et al., 2011; Magee & Grienberger, 2020; Roelfsema &
Holtmaat, 2018), where jointly active neurons generate
an eligibility trace that is modulated by a subsequent
signal. This modulating signal could communicate the
reward received after a successful action.

For age representations of time, synaptic growth or
decay could reflect the passage of time. Examples of
how this could be achieved are discussed in the next
section.

For timestamp representations of time, the synaptic
changes for memorization and behavioural learning are
sufficient. Although this is an appealing advantage of
timestamp representations of time, it comes at the cost
of an increased complexity to compute the age of re-
called memories, because a representation of the current
moment in time needs to be compared with the time of
storage of the recalled event.

Examples of Episodic-Like Memory Systems

With four different encoding schemes (Figure 2A),
two different ways of representing time (Figure 2B),
three different codes for associating content and time
(Figure 2C), two different memory retrieval mecha-
nisms (Figure 2D), three different readout architectures
(Figure 2E), and two different storage-retrieval mecha-
nisms (synaptic delays Figure 3 or periodic processes,
like e.g. proposed by Hasselmo et al., 2002) we have
4 × 2 × 3 × 2 × 3 × 2 = 288 concrete hypotheses about
Hebbian “what-where-when” memory systems. This is
a lower bound, because even more association, storage-
retrieval and readout mechanisms are conceivable. The
number 288 looks daunting. However, in this section
we discuss in more details six specific examples that are
representative of the different kinds of models (Table 1).
Detailed mathematical descriptions of these models can
be found in section “Mathematical Description of the
Models”.
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Age tagging models. A We consider the same se-
quence of events as in Figure 4A. B In the Onehot-
Age-Tagging model, a connection to the first tag neu-
ron is formed during storage of event “red triangle”
at time t1. C Thanks to a process that prunes some
synapses and grows new ones, tag neuron 3 is activated
during recall at time t3, indicating how long ago the red
triangle was observed. D In the Poprate-Age-Tagging
model, connections to all tag neurons are formed dur-
ing storage. E These connections are pruned at differ-
ent moments in time, such that during recall at time
t3, fewer connections are present than at time t1. The
number of active “tag” neurons during recall encodes the
elapsed time since storage: if many “tag” neurons are
active during recall, the recalled event happened recently
and if few “tag” neurons are active, it happened long
ago.

Timestamp Tagging with Auto-Associative Re-
trieval and Complex Readout

Time tagging models are characterized by a concate-
nation code that combines one subgroup of neurons that
represent content information (“content” in Figure 4)
with another subgroup of neurons that represent “when”
information (“tag” in Figure 4).

In the spirit of (temporal and random) context mod-
els (Howard, 2022; Howard & Kahana, 2002; Polyn et
al., 2009), the “when” information could be given implic-
itly by activity patterns that encode context (“now” in
Figure 4). This context could be a trace of recent obser-
vations of states that change on different timescales like
emotional states, the presence of certain conspecifics,
ambient temperature or the weather. In the following,
we call this the “Context-Tagging model”. At the mo-
ment of storage, this context information is bound to-
gether, e.g. by a Hebbian plasticity rule, with the spe-
cific event under consideration (Figure 4B). If an event
triggers the recall of an earlier event (Figure 4C), the
associated context, i.e. the “when” information, is also
recalled. A comparison of the current context with the
recalled context may allow a rough estimate of the age
of the recalled memory (cf. contextual overlap theory,
Friedman, 1993). Because the estimation of age from
the comparison of two context-related activity patterns
does, in general, not induce a linearly separable prob-
lem, a complex readout network with at least one hidden
layer is required, to learn arbitrary readout rules.

Age Tagging Models

Other tagging models can be constructed with one-
hot coding or population-rate coding for the age of mem-
ories (Figure 2A). In the Onehot-Age-Tagging model,
storage leads to the formation of a synaptic connection
to the first tag neuron (Figure 5B). It is hypothesised
that specific circuits allow to change the representation
of the memory by growing new synapses and pruning old
ones (Remme et al., 2021; Roxin & Fusi, 2013). Such a
mechanism could implement a one-hot time code, where
the identity of the activated tag neuron during recall
indicates the age of the memory (Figure 5C).

In the Poprate-Age-Tagging model, storage leads to
the formation of many synaptic connections to sev-
eral “tag” neurons (Figure 5D). These connections are
pruned at different moments in time. Therefore, the
number of activated tag neurons during recall is indica-
tive of the elapsed duration between storage and recall
(Figure 5E).

In contrast to the Context-Tagging model with a
timestamp code (Figure 4), the representation of time
changes in the Onehot-Age-Tagging model and the



8 BREA, MODIRSHANECHI, IATROPOULOS, GERSTNER

A
input ∆t0 ∆t1 ∆t2

storage at t1

input ∆t0 ∆t1 ∆t2

during consolidation

input ∆t0 ∆t1 ∆t2

a1

a2

a3

action

recall at ∆t1 = t2 − t1 after storage

B

input

storage at t1

input
×

××

×
pruning

input

a1

a2

a3

action

recall at t3

Figure 6

Examples of Chronological Organization Models. A In this age model, a systems consolidation mechanism
shifts the location where a memory is stored. During storage (left), the red connections are strengthened, whereas the
feedforward weights (gray dotted arrows) are inactive. During consolidation (middle), input neurons are randomly
active and activity is forward propagated (gray arrows; indirect pathway from input to ∆t1), such that new, direct-
pathway connections (dashed red) can grow between input and ∆t1 neurons. Simultaneously, the original weights
between input and ∆t0 neurons decay, such that after consolidation only the newly grown weights remain. During
recall (right), all active neurons in layers ∆t0,∆t1,∆t2, . . . give input to the action neurons (orange connections). B
Another age model relies on pruning of synapses at different moments in time, similar to the Poprate-Age-Tagging
model (Figure 5E). Synapses onto neurons in the first memory layer have a faster decay rate than those onto the
last layer. During recall, the number of active neurons across all layers is indicative of the age of a memory: at t1
more “red” and “triangle” neurons are activated than at t3.

Poprate-Age-Tagging model, because the activity pat-
tern of the tag neurons during retrieval depends on the
elapsed time since storage. Age tagging allows simple
readout learning of age-dependent behavioral rules, in
particular, when the order of pruning synaptic connec-
tions is fixed, i.e. whenever it is possible to order pairs of
tag neurons i and j, such that connections to tag neu-
ron i are consistently lost earlier than simultaneously
grown connections to tag neuron j. One can even prove
(see Equivalence of One-Hot coding and Deterministic
Population-Rate coding) that this population rate code
leads to the same action selection policy as a model with
one-hot coding of “when” information, if the readout
connections follow a special synaptic plasticity rule.

Age Organization with Systems Consolidation

Instead of using concatenation, as in tagging models,
the content and “when” information could be associated
with the (outer) product operation (⊗ in Figure 2). This
leads to a class of models with a chronological organiza-
tion of memories (Friedman, 1993).

The chronological organization is most obvious, when
arbitrarily encoded content information and one-hot en-
coded age information is associated with the product
operation. We call this the Age-Organization model.
In this case, the configuration of active neurons dur-
ing recall of a given event depends on the time of re-
call (Figure 6), similarly to how suitcases on a conveyor
belt change their position relative to a fixed observation
point. Because of the product operation, there are mul-
tiple groups of neurons that code for content (e.g. the
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Figure 7

Sparse Encoding with Random Synaptic Pruning and Simple Readout. The input is sparsely and randomly
connected to an intermediate and a content layer (gray arrows). During storage, Hebbian plasticity connects co-
activated neurons (red arrows). These synaptic connections are pruned after random, postsynaptic-neuron-specific
durations, such that during recall at time t2 more neurons are activated in the content layer than during recall at
time t3 > t2. This is an example of a non-linear mixed code of content and time, because the activity of a given
neuron in the content layer can mean, for example, “a red triangle was observed at most so-and-so long ago”. The
neurons in the content layer link directly to action neurons (orange arrows).

groups ∆t0, ∆t1, ∆t2 in Figure 6A), but the neurons in
only one of these groups become active during recall of a
specific event. The identity of the active group encodes
implicitly the age of the memory: if recall happens some
time interval ∆t1 after storage, the content neurons in
group ∆t1 become active, whereas the neurons in other
groups become active during recall at other times (Fig-
ure 6A).

Such an age code requires rewiring of synaptic con-
nections. Similarly to the Onehot-Age-Tagging model,
this could be mediated by a systems consolidation pro-
cess, where new synapses are grown to groups of neurons
that code for older memories. For example, in consolida-
tion phases during sleep, randomly activated input neu-
rons could trigger recall of past events in neurons con-
nected to the input by an indirect pathway, thereby al-
lowing to learn direct-pathway connections (Figure 6A,
cf. parallel pathway theory, Remme et al., 2021). As
a result of synaptic plasticity, the location of the mem-
orized event inside the memory system shifts forward
over time (Figure 6A), inducing a “chronological” orga-
nization of memories.

Age Organization with Synaptic Pruning

Another instantiation of a chronological organization
model arises when considering the product between con-
tent and population-rate encoded “when” information
(Figure 6B). This model is similar to the Poprate-Age-
Tagging model. In both models, many synapses are
grown during storage (storage at t1 in Figure 6B) and
pruned at different moments in time, such that the age
of a recalled memory can be decoded from the identi-
ties or numbers of active neurons during recall. The
chronological organization across the memory system
arises from the fact that synapses onto neurons in the
first layer of the memory decay more quickly than those
in the last layer (Figure 6B).

Sparse Encoding with Random Synaptic Pruning
and Simple Readout

Despite the frequent appearance of the special asso-
ciation schemes “concatenation” and “product” in the
literature (⊕ and ⊗ in Figure 2C), it is unclear why
brains should favor them over other non-linear mixed
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association schemes.
Combining sparse random projections for association

(RP in Figure 2C) with synaptic delays for storage and
recall (Figure 3) and synaptic pruning (Figure 5E and
Figure 6B) leads to the Random-Pruning model (Fig-
ure 7). During storage, the input triggers distributed
activity patterns in the intermediate and content neu-
rons. Because of the random projections, these activity
patterns encode the input information implicitly, i.e. the
neurons in these groups are not necessarily “tuned” to a
single feature, like the redness of an object, but a given
neuron may specialize to specific combinations of fea-
tures and become active, for example, only when a red
triangle is shown. During the storage phase, a Hebbian
plasticity rule can initiate the growth of synaptic con-
nections between the intermediate layer and the content
neurons (storage in Figure 7).

In the model of Figure 7, the sparse random pro-
jection code of the content is combined with a popu-
lation rate code of the “when” information, similarly
to the Poprate-Age-Tagging model (Figure 5E) and the
chronological organization model with synaptic pruning
(Figure 6B): synapses to the content layer are pruned
after random durations that depend on the identity of
the post-synaptic neuron, such that more neurons be-
come active when recalling a recent event (recall at t2 in
Figure 7), than when recalling an old event (recall at t3
in Figure 7).

Simulations

To highlight advantages and disadvantages of differ-
ent systems and explore the limitations of purely be-
havioural experiments as a tool to learn about how
brains allow to remember the “when” of past events, we
simulated different “what-where-when” memory models.

For the Context-Tagging model we assume a fixed
preprocessing to a one-hot intermediate representation
of the age of a memory (Figure 4C), which is identical to
the one-hot representation of time in the Onehot-Age-
Tagging model. Because of their similarities, we do not
simulate these two models separately and refer to them
as Context/Onehot-Tagging model.

Although the discrimination of some models requires
recordings of neural or synaptic dynamics, purely behav-
ioral experiments can provide valuable insights. Sup-
pose, for example, that a subject has learned how to
respond to recalling a memory with a certain content
and age, like performing action a2 when the event “red
triangle” is remembered to have happened ∆ttrain ago
(Figure 8A, see also section “Protocols of Simulated
Experiments”). In a similar task jays learned to avoid
food caches containing crickets that they cached 4 days
ago (Clayton et al., 2003). If one tests the subject on

untrained content-age combinations, for example “blue
square” after ∆ttest (Figure 8A), different representations
and associations of content and memory make different
predictions.

How a model generalizes depends mostly on the over-
lap of the recalled memories. For the one-hot coded
memories in the Age-Organization model, there is no
generalization from training to test settings, because dis-
tinct neurons are active during the recall of “red trian-
gle ∆ttrain ago” and “blue square ∆ttest ago” for any ∆ttest
(light blue curve in Figure 8B). In the Context/Onehot-
Tagging model, the tags for “red triangle ∆ttrain ago”
and “blue triangle ∆ttest = ∆ttrain ago” are identical, de-
spite the contents being different, and therefore there is
some generalization to other memories of the same age
(yellow curve in Figure 8B). Even more generalization
occurs with the Poprate-Age-Tagging and the Random-
Pruning model, because there is also some overlap in
the recalled activity patterns for ∆ttest , ∆ttrain.

Experiments that probe the learnability of different
tasks can provide further evidence in favor or against
specific models. Consider a task, where subjects are
repeatedly trained to respond with action a1 if the age
of a remembered event is less than some threshold and
respond with action a2 otherwise (Figure 9A, see also
section “Protocols of Simulated Experiments”). Such a
task can be learned with all the models considered here,
but the Age-Organization model has potentially an ad-
vantage, because the one-hot encoding permits faster
learning with higher learning rates than other represen-
tations (Figure 9B; learning rates for all models are op-
timized for best final performance in the tasks in Fig-
ure 9A and Figure 10A). However, if an experiment
would show slow learning, this should not be taken as
evidence against the Age-Organization model, because
a suboptimal learning rate would induce slow learning
also in the Age-Organization model.

If the correct responses of the subjects depend not
only on the age of the recalled events, but also on
their content, XOR-like tasks can be constructed (Fig-
ure 10A, see also section “Protocols of Simulated Exper-
iments”). For example, consider a task where action a2
is rewarded, whenever the memory of a red triangle is
at most 2 time units old or the memory of a blue square
is older than 2 time units, but otherwise action a1 is
rewarded. A linear readout cannot correctly learn this
rule, if the content and the “when” information are given
in a concatenation code (Figure 10B). We find that tag-
ging models systematically fail on this task (yellow and
red curve in Figure 10B). Both the Age-Organization
and the Random-Pruning can learn this task, but the
Age-Organization model could learn it much faster (op-
timized learning rates, same as in Figure 9B).
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Generalization of actions that depend on the age of memories, based on a single rewarded trial. A
A subject learns in a binary forced-choice task that action a2 is rewarded (or action a1 is punished), when recalling
an event that happened ∆ttrain ago. Training occurs with the same stimulus (red triangle). After training, the subject
is tested once with a different stimulus (e.g. blue square) and a retention interval ∆ttest which may differ from the
training interval. B Average probability across 104 simulated subjects of taking action a2 as a function of ∆ttest.
For the sparsest code (Age-Organization) there may not be any generalization to other stimuli, even when the test
interval is the same as the training interval (blue dot at ∆test = 3). Conversely, for distributed representations
(Poprate-Age-Tagging and Random-Pruning) there is generalization to other stimuli and test intervals different than
the training interval. Quantitatively the results would be different for other learning rates or other values of the
probability of a2 before learning, but qualitatively the results stay the same.
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Learning to take actions that depend only on the age of memories. A The experiment consists of multiple
trials with random retrieval intervals ∆retrieval. If the retrieval interval satisfies ∆retrieval ≤ 2, action a1 is rewarded
(+1) and action a2 is punished (reward -1); reward contingencies are reversed, if the retrieval interval is larger
than 2. B The expected reward per trial is measured over 103 simulated agents. All models can learn this task, but
learning with one-hot codes can be faster than with other codes, because large learning rates can be chosen. The
optimal performance (dashed line) was computed by averaging 104 agents that make for each interval at most one
mistake and always select the correct action afterwards.
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The results in these simulated experiments depend
crucially on the representation of the recalled informa-
tion that arrives as input to the final linear decision
making layer and the plasticity rule that changes the
synaptic weights of this decision making layer. With
this insight, it is straightforward to design similar ex-
periments that investigate, for example, the representa-
tion of different aspects of “what” and “where” informa-
tion. However, this dependence upon the representation
of recalled information also implies that purely behav-
ioral experiments cannot discriminate between different
models that exhibit the same activity pattern as input
to the final decision making layer. Therefore it may, for
example, be almost impossible to discriminate times-
tamp from age representations of time, unless one can
selectively manipulate the zeitgeber or rely on neural
recordings.

Discussion

We showed that different choices of neural encoding,
reference point of time, content-time associations, re-
trieval and readout mechanisms lead to a family of mod-
els, where the “what”, “where” and “when” of events can
be stored and retrieved through automatic processes and
Hebbian plasticity. The concrete implementations are
idealized “toy”-models, that illustrate the central ideas
succinctly.

The considered neural codes (rate, one-hot, dis-
tributed and poprate, Figure 2A) are spatial codes, in
the sense that all relevant information about the “what”,
“where” and “when” of an event is given by the activity
pattern of a group of neurons in a single time step. This
activity pattern could be, for example, the average firing
rates of neurons in a time window of 100 milliseconds.
In addition, one could consider spatio-temporal codes,
where some information is encoded in the temporal evo-
lution of activity patterns. For example, a single neuron
could implement a temporal one-hot code, where the
information is encoded by the duration between some
fixed reference point in time and a spike (time-to-spike
code). For spatial-temporal codes, more sophisticated
readout and learning mechanisms than the ones in Fig-
ure 2E would be needed to extract information from the
temporal evolution of activity patterns. With spatio-
temporal codes, the already large lower bound of 288
models (see section “Simulations”) would further in-
crease and include models with spatio-temporal retrieval
(e.g. Jensen and Lisman, 2005).

Memory storage and learning of new tasks in the pro-
posed models rely on Hebbian and neoHebbian synap-
tic plasticity, for which there is ample experimental evi-
dence (Gerstner et al., 2018; Kuśmierz et al., 2017; Lis-
man et al., 2011; Magee & Grienberger, 2020; Roelfsema

& Holtmaat, 2018). An implementation of age represen-
tations of time with a rate code could rely on synapses
that decay at different rates on a timescale of days to
weeks (Abraham, 2003; Statman et al., 2014). Rewiring
of networks in one-hot or distributed encoding of the age
of memories is consistent with the observed phenomena
of rewiring of connections (Bennett et al., 2018) and
systems memory consolidation (Moscovitch & Gilboa,
2021; Squire et al., 2015) and could be achieved with
the hypothesised mechanisms of parallel synaptic path-
ways (Remme et al., 2021) or memory transfer (Roxin
& Fusi, 2013). Although there is experimental evidence
for all the synaptic processes needed to implement the
above models, further experiments should be done to de-
termine which processes are actually used to remember
the time of past events.

Chronological organization models can be generalized
to include models where the different groups of content
neurons are not just copies of one another, but the rep-
resentations of the memory content in each group differ
from on another. For example, a lossy, age organized
model, similar to the one described in section “Age Or-
ganization with Synaptic Pruning”, could store the gist
of an event in some groups of neurons together with a
detailed representation in other groups of neurons and
forget the detailed representation faster than the gist.
This could be a simple model of the trace transformation
theory (Moscovitch & Gilboa, 2021), which postulates
that recall of details requires a functional hippocampus,
whereas the gist can be recalled without hippocampus.

On a conceptual level, multiple theories of the pro-
cessing of “when” information have been proposed.
For example, Friedman, 1993 described eight theo-
ries: strength, chronological organization, time tagging,
contextual overlap, encoding perturbation, associative
chaining, reconstruction and order codes. The last four
theories of this list are beyond the scope of this arti-
cle. Our work, however, provides concrete hypotheses
for neural implementations of the first four theories and
discusses their implications on readout of temporal and
content information.

Theory-ladenness of observations (Kuhn, 1996) to-
gether with the richness of biological phenomena al-
lows to find support in experimental data for differ-
ent theories, such as chronological organization as pro-
posed by theories of systems consolidation (Moscovitch
& Gilboa, 2021; Squire et al., 2015), time tagging mod-
els with context tags that decay on different timescales
(Bright et al., 2020; Tsao et al., 2018), time tagging
models based on intrinsic oscillators (Rolls & Mills,
2019), time tagging models with hippocampal CA1 time
cells (Eichenbaum, 2017) and hippocampus-dependent
reconstruction-based theories (Bellmund et al., 2022).
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Figure 10

Learning to take actions that depend on the age and the content of memories. A The experiment
consists of multiple trials with different retrieval intervals ∆retrieval and objects. If the object is red and the retrieval
interval is ∆retrieval = 2 or the object is blue and ∆retrieval = 3, action a2 is rewarded (+1) and action a1 is punished
(reward -1); reward contingencies are reversed, otherwise. We call the sequence of these four trials one session. B
The expected reward per session is measured over 103 simulated agents. Because this is an XOR-like task, models
with Context/Onehot-Tagging or Poprate-Age-Tagging encoding cannot reach better performance than the best linear
model (correct in 3 and wrong in one condition leads to an expected reward of (+3−1)/4 = 0.5). The Random-Pruning
model eventually learns the task, but it learns slower than the Age-Organization model encoding and sufficiently large
learning rate. The optimal performance (dashed line) was computed by averaging 102 agents that make for each
interval and content at most one mistake and always select the correct action afterwards.

�

name time code association retrieval & readout comments

Context-Tagging timestamp distributed concatenation auto-associative & complex see Figure 4
Onehot-Age-Tagging age one-hot concatenation auto-associative & simple see Figure 5C
Poprate-Age-Tagging age pop-rate concatenation auto-associative & simple see Figure 5E
Age-Organization age one-hot (outer) product hetero-associative & simple see Figure 6A
Poprate-Age-Organization age pop-rate (outer) product hetero-associative & simple see Figure 6B
Random-Pruning age pop-rate random projection hetero-associative & simple see Figure 7

Temporal Context (TCM) timestamp distributed concatenation Recall is hetero-associative
with a stochastic winner-
takes-all mechanism. Read-
out learning is not mod-
elled.

see Howard, 2022; Howard
and Kahana, 2002; Polyn et
al., 2009. The age of mem-
ories could be retrieved us-
ing, either, the current context
and reconstructing the contex-
tual overlap, or, the explicit
exponential decay of memory
traces in the context tags.

Complementary Learning
Systems

age distributed (lossy outer) prod-
uct: at storage the
content is redun-
dantly encoded in
hippocampal and
cortical activity

Recall is auto-associative.
Readout learning is not
modelled.

See e.g. Kesner and Rolls,
2015; McClelland et al., 1995;
Moscovitch and Gilboa, 2021;
Remme et al., 2021; Squire et
al., 2015; Treves and Rolls,
1994. The age of a memory
can roughly be estimated by
how much the hippocampus is
involved and needed for mem-
ory retrieval.

Table 1

Examples of episodic-like memory systems. Models above the horizontal line are discussed in the text. Below
the horizontal line are two broad classes of episodic-memory models that allow to reconstruct the “when” information
of past events, although they do not specifically focus on this aspect.
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It is reasonable to assume that different mechanisms are
at play in different species and even within the same in-
dividual for tasks on different timescales (Wiener et al.,
2011).

Although it is unclear, what exactly should be consid-
ered as single events that are stored in episodic mem-
ory (Zacks, 2020), the popular hypothesis that events
are stored together with context information has led to
numerous studies. Most experiments with physiologi-
cal recordings focus on short timescales in the range of
seconds to minutes, where memory for the “when” can
be supported by neural activity mechanisms which are
presumably independent of long-term synaptic plasticity
(Bright et al., 2020; Tsao et al., 2018). More relevant for
the topic of this paper are experiments involving longer
timescales. For example, Rubin et al., 2015 recorded
for two weeks calcium levels in more than 1000 neurons
in the CA1 of mice that were placed every day in two
environments with distinct features. They found that
the correlation of population activity between different
contexts on subsequent days is higher than between the
same context on distant days (Fig. 2A in Rubin et al.,
2015; the opposite is observed, however, if the analysis is
restricted to a subset of cells that they identified as pure
place cells). This surprising result would be consistent
with a timestamp mechanism similar to the Context-
Tagging model. However, it is unclear, if the popula-
tion activity reflects recalled events or if the measured
calcium signal is dominated by stimulus-driven input.
The surprising result could simply be a consequence of
representational drift (Rule et al., 2019), which may be
unrelated to the storage and recall of events and de-
pend, for example, on behavioral variability (Sadeh &
Clopath, 2022).

Also some purely behavioral studies with human par-
ticipants are consistent with the contextual overlap the-
ory implemented in the Context-Tagging model. For
example, Taub et al., 2022 asked human participants
during the first Covid-lockdown in April 2020 in Israel,
to retrospectively estimate the time passed since promi-
nent news events happened that were related or unre-
lated to Covid. They found that participants underes-
timated the elapsed duration since Covid-related events
more than other durations, which is consistent with the
contextual overlap theory, as the context at the time of
recall during the lockdown was Covid-dominated (Taub
et al., 2022). Whether this should be taken as evidence
for the simple Context-Tagging model is unclear, how-
ever, as healthy adult humans are believed to rely on
concious reconstruction-based estimates of the time of
past events (Friedman, 1993), as illustrated in the in-
troduction with the example of the journey to Turkey.

Behavioral experiments with California scrub-jays

showed convincingly that these birds have a flexible
“what-where-when” memory system (Brea et al., 2023;
Clayton & Dickinson, 1999; Clayton et al., 2001, 2003,
2005). Although the existing experimental results can-
not discriminate between the different models consid-
ered here, the observation that they can learn different
behavioral rules that depend on the content and age
of memories within few trials, speaks in favor of the
Age-Organization model, that allows fast and flexible
learning.

Remembering the “when” is an idiosyncratic feature
of episodic and episodic-like memory. Thus, revealing
the mechanisms that underlie the ability to estimate the
age of memories is a crucial step towards a better un-
derstanding of episodic memory systems. The different
models discussed here can serve as concrete hypotheses
and the simulated experiments as inspirations for future
experiments that combine behavioral and physiological
recordings to learn more about how humans and animals
remember the “when” of past events.

Methods

Formal Description of Codes

We consider a discretized version of the sensory
stream in

∏N
i=1Ci × T , where Ci denotes the finite set

of values that sensor i can take and T denotes the finite
set of possible time points.

For a single finite set C = {c1, . . . , c|C|} with elements ci

and cardinality |C|, we define three different elementary
coding schemes for representing element ci:

• rate code: rate(ci) B r(i) ∈ R, where r is an arbi-
trary, one-to-one function.

• one-hot code: a |C|-tuple-valued function
onehot(ci) B

(
onehot1(ci), . . . , onehot|C|(ci)

)
with onehot j(ci) B Aiδi j , amplitude Ai > 0 and
Kronecker delta δi j B 1 if i = j and δi j B 0
otherwise.

• distributed code: a one-to-one M-tuple-valued
function or random vector distr(ci) B(
distr1(ci), . . . , distrM(ci)

)
with M > 1 and

0 < distr j(ci) ≤ distr j′ (ci) for at least one pair
j , j′ and at least one i (Figure 2A).

In addition to these elementary coding schemes, we
consider population rate codes, where the value ci is
encoded by the number of active neurons. An exam-
ple of a deterministic population rate code is given by
distr j(ci) = 1 if j ≤ i and distr j(ci) = 0 otherwise
(poprate in Figure 2A). Stochastic population rate
codes satisfy the condition Pr

(∑
j distr j(ci) = i

)
= 1.
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These codes can be reduced to a rate code by computing
the population activity rate(ci) = i =

∑|C|
j=1 distr j(ci).

We write `(code(C)) or `(code) for the length of
an element of C in code-coding, e.g. `(rate(C)) =
1, `(onehot(C)) = |C|.

A generalization to continuous variables x (space,
time, color, etc.) can easily be found with, e.g. con-
tinuous rate coding rate(x) = x, generalized one-hot
coding with e.g. radial basis functions rbf j(x) = e−( j−x)2

for a population of neurons with indices j = 1, . . . ,M or
generalized distributed code with e.g. mixtures of radial
basis functions.

Formal Description of Association Schemes

Any function f : X × Y → Z defines an association
f (x, y) ∈ Z between elements x ∈ X and y ∈ Y. If the
function f is one-to-one, the association f (x, y) keeps the
full information about the associated elements x and y.

We define

• concatenation of codes:
x ⊕ y B (x1, . . . , x`(x), y1, . . . , y`(y)) (Figure 2C).

• linear mixed codes: x ⊕M y B M(x ⊕ y), where
M : R`(x)+`(y) → RM is a linear map.

• product of codes: x⊗ y B x · y1 ⊕ x · y2 ⊕ · · · ⊕ x · y`(x),
where the product x · yi between a tuple x and
a scalar yi has the standard meaning x · yi =

(x1yi, . . . , x`(x)yi) (Figure 2C)

• random projections: RP(x, y) = σ(W1x + W2y),
where W1 and W2 are fixed random matrices and
σ is some non-linear function that is applied
element-wise.

Mathematical Description of the Models

We model brains that observe sensory states
xt, xt+1, . . . and take actions (or decisions) at, at+1, . . . on a
slow timescale. These brains have internal neural states
zτ and synaptic connection parameters Wτ that evolve
on a faster timescale, indicated by the time index τ.

For all the models we used the storage and recall
mechanism with synaptic delays, described in Figure 3
and hetero-associative recall. For the tagging models,
this implementation differs from the descriptions with
auto-associative recall in Figure 4 and Figure 5, but it
leads to the same predictions for the behavioral experi-
ments.

The internal neural states zτ are organized into groups
of neurons. Tagging models have sensor, intermediate,
content, tag and actuator neurons and we write the neu-
ral state zτ = zsensor

τ ⊕ zintermediate
τ ⊕ zcontent

τ ⊕ ztag
τ ⊕ zactuator

τ .
The Age-Organization model and the Random-Pruning

model have the same groups of neurons, except that the
group of tag neurons is lacking and the group of content
neurons is larger than in the tagging models. The group
of sensory neurons is further divided into two subgroups
that receive color and shape as one-hot coded input.
The activity in these sensory neurons propagates along
the synaptic connections to down-stream neurons, until
an action is taken. Once an action was taken, the next
sensory input is provided to the sensory neurons.

The activity propagation along synaptic connections
can be described in terms of the update of the neural
state of neurons in group µ, which is given by

z(µ)
τ = σ

(µ)(Wν→µτ−1 z(ν)
τ−1
)
, (1)

where σ(µ), the activation function of neurons in group
µ, is applied element-wise to the matrix-vector product
of synaptic weight matrix Wν→µτ−1 and activity state z(ν)

τ−1
of group ν in the previous time-step τ−1. The activation
function of the actuator group is the soft-max function
σactuator(x)i = exi/

∑
j ex j . For all other groups of neurons

we use the Heaviside function σ(i)(x)i = H(xi − b) = 1 if
xi > b and H(xi − b) = 0, otherwise, where bias b = 0 for
all groups of neurons except for the content group in the
Random-Pruning model, where b = 1.5. The non-zero
bias in the Random-Pruning assures sparse activity in
the content layer. Action at is sampled with probability
zactuator
τ after recall has happened.

Because we used the recall mechanism with synap-
tic delays (Figure 3) and it takes three time steps
for sensory activity to propagate along the “input-
intermediate-content-actuator” pathway, there is a sim-
ple relationship between the slow timescale indexed
by t and the fast timescale indexed by τ: if zsensor

τ =

onehot(color(xt))⊕ onehot(shape(xt)), action at will be
sampled with probability zactuator

τ+3 . The sensory neurons
are inactive during propagation of the activity through
the neural network, i.e. zsensor

τ+1 = zsensor
τ+2 = zsensor

τ+3 = 0;
the sensory neurons are reactivated, once action at

has been taken, i.e. zsensor
τ+4 = onehot(color(xt+1)) ⊕

onehot(shape(xt+1)).
Synaptic weight matrices are static or evolve accord-

ing to one of the following plasticity rules:
Hebbian

∆Wν→µτ,i, j = Wν→µτ,i, j −Wν→µτ−1,i, j = z(µ)
τ−1,iz

(ν)
τ−1, j . (2)

where i is the postsynaptic neuron in group µ and j the
presynaptic neuron in group ν.
Reward-Modulated Hebbian

Eν→actuator
τ,i, j = z̃actuator

τ,i z(ν)
τ−1, j (3)

∆Wν→actuator
τ,i, j = Wν→actuator

τ,i, j −Wν→actuator
τ−1,i, j = ηrtEν→actuator

τ−1,i. j (4)

where Eν→actuator
τ is an eligibility trace that depends on

z̃actuator
τ,i = 1 − zactuator

τ,i for postsynaptic neuron i = at
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and z̃actuator
τ, j = −zactuator

τ, j , otherwise, η a learning rate and
rt ∈ {−1, 1} is the reward obtained after performing ac-
tion at−1. This plasticity rule can be seen as a policy gra-
dient (REINFORCE) rule (Williams, 1992), where the
terms z̃actuator

τ,i arise as a consequence of taking the deriva-
tive of the logarithm of the soft-max policy function in
the derivation of the REINFORCE rule. This plasticity
rule is used in all models for the readout weights (orange
in the figures).
Hebbian Latent-State-Decay

S ν→µτ,i, j =
[
S ν→µτ−1,i, j + smax

i z(µ)
τ−1,iz

(ν)
τ−1, j − ∆s

]smax
i

0
(5)

Wν→µτ,i, j = H
(
S ν→µτ,i, j

)
(6)

where S ν→µτ is a latent synaptic state matrix, [x]b
a =

min(b,max(a, x)), smax
i is the maximal value the latent

state for post-synaptic neuron i can achieve, ∆s is a
decay term and H is the Heaviside function. After a
Hebbian growth, synapses of this kind are pruned af-
ter smax

i /∆s time-steps, unless they are restrengthened
meanwhile. This plasticity rule is used in the Poprate-
Age-Tagging model for the connections from intermedi-
ate to tag neurons and in the Random-Pruning model
for connections from intermediate to content neurons.
Postsynaptic Rewiring

Wν→µτ,i, j = Wν→µ
τ−∆τ,i−1, j , (7)

where ∆τ is such that the synaptic change happens al-
ways when perceiving a new input xt. This rule is an
abstract implementation of a hypothetical systems con-
solidation process, where the active neuron encodes the
age of a memory (e.g. Figure 4C or Figure 6A). This
plasticity rule is used in the Onehot-Age-Tagging model
for the connections between the intermediate neurons
and the tag neurons and in the Age-Organization model
for the connections between the intermediate neurons
and the content neurons.

Equivalence of One-Hot coding and Determinis-
tic Population-Rate coding

Let x be a one-hot coded neural activity pattern,
w ∈ RN a weight vector, y = wT x a linear readout,
and x̃ = Px, with P such that x̃i =

∑N
j=1 x j, the re-

parametrization from one-hot coding to the determin-
istic population rate code at the bottom of Figure 2A.
The corresponding transformation w̃ = (P−1)T w leaves
the response invariant, i.e. ỹ = w̃T x̃ = y. The gradient
descent learning rule ∆wi = η

∂
∂wi

F(y) = η f (y)xi, for some
f (x) = ∂

∂x F(x), transforms under P to ∆w̃i = η f (ỹ)
(
2x̃i −

(x̃i−1 + x̃i+1)
)

for i = 2, . . . ,N − 1 and ∆w̃1 = η f (ỹ)
(
x̃1 − x̃2

)
,

∆w̃N = η f (ỹ)
(
2x̃N − x̃N−1

)
as can be seen by computing

(P−1)T (P)−1 (Surace et al., 2020). If the synapses are

spatially organized such that the inputs of presynap-
tic neurons i − 1, i, i + 1 are neighbouring, the resulting
plasticity rule features cross-talk between neighbouring
synapses. In particular, a synaptic weight w̃i should only
be changed, if the inputs at the neighbouring synapses
i − 1 and i + 1 differ from the input at synapse i.

Protocols of Simulated Experiments

The experimental protocols of the simulated experi-
ments are reported from the perspective of the experi-
menter. All protocols are constructed using four basic
actions that an experimenter performs: show to the sub-
ject some stimulus (show_to!), provide a choice of mul-
tiple actions and observe the action taken by the subject
(force_to_choose_and_observe_action!), reward or
punish the subject (reward!) and keep track of the rel-
evant observations in the results table (push!). It is
assumed, but not explicitly modelled, that in between
each action taken by the experimenter there is some
waiting time. These waiting times should be sufficiently
long, for example on the order of hours or days, such
that subjects cannot solve the tasks with working mem-
ory alone, but need to rely on long-term “what-where-
when” memory.

Generalization of actions (Figure 8)

results = DataFrame(a2_test = [])
for subject in subjects

show_to!(subject , red_triangle)
show_to!(subject , blue_square)
show_to!(subject , green_circle)
show_to!(subject , red_triangle)
a_train = force_to_choose_and_observe_action!(subject)
if a_train == a_1

reward!(subject , -1)
else

reward!(subject , +1)
end
delta_test = rand([1, 2, 3, 4, 5])
if delta_test == 1

show_to!(subject , yellow_pentagon)
show_to!(subject , yellow_pentagon)

elseif delta_test == 2
show_to!(subject , green_circle)

elseif delta_test == 3
show_to!(subject , blue_square)

elseif delta_test == 4
show_to!(subject , yellow_pentagon)
show_to!(subject , blue_square)

else
show_to!(subject , yellow_pentagon)
show_to!(subject , orange_halfcircle)
show_to!(subject , blue_square)

end
a_test = force_to_choose_and_observe_action!(subject)
push!(results , is_equal(a_test, a2))

end
# compute average number of a2 responses
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Learning to take age-dependent actions (Fig-
ure 9)

results = DataFrame(trial = [], reward = [])
for subject in subjects

for trial in trials
show_to!(subject , red_triangle)
delta = rand([1, 2, 3, 4, 5])
for i in 1:delta -1

show_to!(subject , black_circle)
end
show_to!(subject , red_triangle)
a = force_to_choose_and_observe_action!(subject)
if (delta <= 2 && a == a_2) || (delta > 2 && a == a_1)

reward!(subject , +1)
push!(results , [trial, +1])

else
reward!(subject , -1)
push!(results , [trial, -1])

end
# do something else before new trial starts

end
end
# compute average reward per trial

Learning to take age- and content-dependent ac-
tions (Figure 10)

results = DataFrame(session = [], reward = [])
for subject in subjects

for session in sessions
r_per_session = 0
# trial 1
show_to!(subject , red_triangle)
show_to!(subject , black_circle)
show_to!(subject , red_triangle)
a = force_to_choose_and_observe_action!(subject)
if a == a_1

reward!(subject , -1)
r_per_session -= 1

else
reward!(subject , +1)
r_per_session += 1

end
# do something else before trial 2 starts
show_to!(subject , red_triangle)
show_to!(subject , black_circle)
show_to!(subject , black_circle)
show_to!(subject , red_triangle)
a = force_to_choose_and_observe_action!(subject)
if a == a_1

reward!(subject , +1)
r_per_session += 1

else
reward!(subject , -1)
r_per_session -= 1

end
# do something else before trial 3 starts
show_to!(subject , blue_square)
show_to!(subject , black_circle)
show_to!(subject , blue_square)
a = force_to_choose_and_observe_action!(subject)
if a == a_1

reward!(subject , +1)
r_per_session += 1

else
reward!(subject , -1)
r_per_session -= 1

end
# do something else before trial 4 starts
show_to!(subject , blue_square)
show_to!(subject , black_circle)
show_to!(subject , black_circle)
show_to!(subject , blue_square)
a = force_to_choose_and_observe_action!(subject)
if a == a_1

reward!(subject , -1)
r_per_session -= 1

else
reward!(subject , +1)
r_per_session += 1

end
push!(results , [session , r_per_session/4])
# do something else before new session starts

end
end
# compute average reward per session
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