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Abstract Computational neuroscience is dominated by a few paradigmatic models,
but it remains an open question whether the existing modelling frameworks are suffi-
cient to explain observed behavioural phenomena in terms of neural implementation.
We take learning and synaptic plasticity as an example and point to open questions,
such as one-shot learning and acquiring internal representations of the world for
flexible planning.

Successful paradigms inspire the thinking of researchers and guide scientific research,
yet their success may block independent thinking and hinder scientific progress [1].
Influential learning paradigms in computational neuroscience such as the Hopfield
model of associative memory [2], the Bienenstock-Cooper-Munro model for recep-
tive field development [3], or Temporal-Difference Learning for reward-based ac-
tion learning [4] are of that kind. The question arises whether these and related
paradigms in machine learning will be sufficient to account for the variety of learn-
ing behaviour observed in nature.

Learning paradigms and learning rules

In classic approaches to machine learning and artificial neural networks, learning
from data is formalized in three different paradigms: supervised, unsupervised and
reinforcement learning [5, 6, 7, 8]. In supervised learning, each sample data point
(e.g., a pixel image or measurements for multiple sensors) comes with a label such
as ’this image is a cat’, ’this image is a dog’ (classification task) or for this configu-
ration of sensory data the correct output is 5.8 (regression task). The objective of
supervised learning is to optimize parameters of a machine or mathematical func-
tion that takes a data point as input and predicts the output, i.e. that performs a
correct classification or prediction. Machine learning has developed powerful mod-
els and methods, such as support vector machines [9], Gaussian Processes [10], or
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stochastic gradient descent in deep neural networks [11] that allow to minimize the
classification or regression error.

In contrast with the above, in unsupervised learning we just have multiple sample
data points (pixel images or sensor readings), but no notion of correct or incor-
rect classification. The typical task of such machine learning algorithms consists of
finding a representation of the data that would serve as a useful starting point for
further processing. Typical objective functions include compression of the data into
a low-dimensional space while maximizing the variance or independence of the data
under some normalization constraints. The fields of signal processing and machine
learning have developed algorithms such as principal component analysis (PCA) [5],
projection pursuit [12], independent component analysis (ICA) [13, 14] and sparse
coding [15], that optimize these objective functions.

In reinforcement learning, data is not given, but collected by an agent which receives
sparse rewards for some state-action pairs [8]. Temporal-difference (TD) learning
methods [16] such as Q-learning [17] and SARSA [18], but also policy gradient
methods [19, 20] are the best-studied methods that enable the agent to choose
actions that eventually maximize the reward.

In contrast to these purely algorithmic methods of machine learning, any learning
method in computational neuroscience should ideally provide a link to the brain. In
the neurosciences it is widely accepted that learning observed in humans or animals
at the behavioural level corresponds, at the level of biological neural networks, to
changes in the synaptic connections between neurons [21, 22].

Classical stimulation protocols for long-term potentiation (LTP) [23, 24, 25], long-
term depression (LTD) [26, 27], or spike-timing dependent plasticity [28, 29, 30],
inspired by Hebbian learning [31], combine the activation of a presynaptic neuron
(or presynaptic pathway) with an activation, depolarization, or chemical manipula-
tion of the postsynaptic neurons, to induce synaptic changes. Numerous synaptic
plasticity rules have been developed that are inspired by these experimental data
[32, 3, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]. Generically, in plasticity rules
of computational neuroscience the change of a synapse from a neuron j to a neuron
i is described as

d

dt
wij = F (wij; si, aj) (1)

where wij is the momentary ’weight’ of a synapse, si describes the state of the post-
synaptic neuron (e.g., its membrane potential, calcium concentration, spike times,
or firing rate) and aj is the activity of the presynaptic neuron [45, 46, 47].

Local plasticity rules of the form (1) can be used to implement a large fraction [44]
of known unsupervised learning methods such as PCA [48], ICA [49], Projection
pursuit [50], or map formation [33, 51, 52, 5, 36, 37] as well as simple forms of
supervised learning, where every neuron receives a direct teaching signal [53, 54, 55].
However, a convincing hypothesis for biologically plausible supervised learning in
recurrent or multilayer (deep) spiking neural networks has yet to be proposed (but
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see [56, 57, 58, 59, 60, 61]).

A link to reinforcement learning can be established by a slight modification of the
Hebbian rule in Eq. (1). Let us suppose that the co-activation of pre- and post-
synaptic neurons leaves a slowly (with time constant τe) decaying trace eij at the
synapses

d

dt
eij = F (wij; si, aj) −

eij
τe

(2)

which is transformed into a permanent weight change only if a modulatory signal
M(t) confirms the change

d

dt
wij = eij(t)M(t) . (3)

The two-step learning process described in Eqs. (2) and (3) is consistent with
experimental data of synaptic plasticity under the influence of neuromodulators
[62, 63, 64, 65, 66] as well as with the concepts of synaptic tagging, capture, and
consolidation [67, 68, 69]. Interestingly, most, if not all, of the reinforcement learn-
ing algorithms in the class of TD-learning and in the class of policy gradient rules
can be cast in the form of Eqs. (2) and (3) [70, 71, 72, 53, 73, 74, 75, 76, 77, 78]. An
excellent candidate for the modulating factor M in Eq. (3) is the neuromodulator
dopamine, since its activity is correlated with reward signals [4, 79].

Associative memory models [80, 81, 2, 82, 83] have been one of the most influential
paradigms of learning and memory in computational neuroscience and inspired nu-
merous theoretical studies, e.g., [84, 85, 86, 87, 88, 89, 90]. Their classification in
terms of supervised, unsupervised, or reward-based learning is not straightforward.
The reason is that in all the cited studies, learning is supposed to have happened
somewhere in the past, while the retrieval of previously learned memories is studied
under the assumption of fixed synaptic weights. Thus, implicitly this paradigm sug-
gests a modulating factor, similar to M in Eq. (3) that determines whether learning
is switched off (for retrieval of existing memories) or on (in the case of novel pat-
terns that need to be learned) [91, 92, 93, 78]. If such a novelty-related modulating
factor is missing, the creation of new memories with Hebbian learning rules is diffi-
cult [94, 95, 96, 97, 98]. Novelty-related factors combined with a Hebb-like STDP
rule have also been studied in models of autoencoders or sequence generators with
spiking neurons [99, 100].

The existing paradigms in computational neuroscience continue to trigger interesting
research that relates synaptic plasticity to learning behaviour. For example, plas-
ticity rules of the form (1) explain the formation of receptive fields in early sensory
processing stages like V1 [101, 44]. Models with modulated Hebbian plasticity as in
Eqs. (2) and (3) can explain habitual learning as observed for example in the Morris
water maze task [77, 78]. And associative memory models explain some behaviour
that depend on episodic memory [98, 102].

Limits of learning rules in computational neuroscience

With the standard paradigms of learning in computational neuroscience reviewed
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above in mind, we return to the question of whether these paradigms are sufficient
to account for the variety of observed learning behaviour, in particular, one-shot
learning and updating acquired representations of the world.

Let us consider the following example. When we hear about a traffic jam on the
route from home to work, we can easily adapt our behaviour and take an alternative
route. Knowing the cause of the traffic jam, e.g. a road construction site, allows us
to decide hours later which route to choose on the way back. In this example, the
internal representation consists, first, of possible routes between home and work,
second, the position and the cause of the traffic jam, and third, cause-dependent
expectations about the duration of traffic jams, e.g. a few hours in case of a small
accident, at least a day for a road construction site. These three pieces of information
are typically acquired at different moments in life and, presumably, all cause lasting
synaptic changes that affect behaviour. Importantly, some events are experienced
only once, e.g. the news about the traffic jam, but are sufficient to cause long-lasting
memories (’one-shot learning’ or ’one-shot memorization’).

One view on the traffic jam example is that it requires episodic memory that links the
’what, where and when’ of specific events. Many models of episodic memory rely on
recurrently connected neural networks that implement an associative memory [102,
103, 104] where specific input cues (e.g., position of an object or event) recall certain
object representations. The association of ’what’ (e.g. traffic jam caused by a road
construction site) with ’where’ could be learned by strengthening the connections
between the corresponding neurons by up-regulation of ’Hebbian’ plasticity under
neuromodulation. A temporal ordering (when) of what-where associations could be
learned by strengthening connections between subsequently active neurons [86, 102].
In these recurrent neural networks, ’one-shot memorization’ has been studied in
models of palimpsest memory [105, 106, 107, 108, 109, 110, 111], where the last
few patterns in a continuous stream of patterns can be recalled and no catastrophic
forgetting is observed.

Such models give a conceptual account for the recall of what-where-when associa-
tions given a cue. But are they sufficient to explain the behaviour in the traffic jam
example? Maybe partially. Experiencing different types of traffic jams, travelling
different routes from home to work, the news about the traffic jam: all these expe-
riences could form ’what, where and when’ associations. But key questions remain.
How does our brain generate internal cues to recall all relevant information about
the specific traffic jam, the possible routes and the typical durations? How does it
combine the recalled patterns to decide which route to take? Without an answer
to these question it seems that models of associative memory explain only half of a
behaviour that requires episodic memory.

An alternative view on the traffic jam example relies on an acquired representation
of space. With unsupervised learning in form of competitive Hebbian synaptic
plasticity, navigating agents can learn the receptive fields of place cells [70, 112, 113],
such that these cells fire exclusively when the agent is at certain positions [114].
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Given these place cells, TD-learning allows to learn position-dependent optimal
actions to reach a goal [71, 70, 112]. In these models, the learning time to find the
optimal actions is comparable to behavioural learning times, if the agent explores a
novel and stationary environment (e.g. the standard reference memory watermaze
task [71]). But if a well known environment changes abruptly, as in the traffic
jam example, learning in these models is much slower than behavioural learning.
In order to match the behavioural learning times, the agent needs to acquire a
map of the environment that adds metric or topological information to the internal
representation and allows planning (see e.g. the delayed-matching-to-place task in
[71]).

Learning a map of the environment is just one example of acquiring domain-specific
structure to quickly learn novel tasks. Many more examples exist. People that
know to read and write can learn from a single presentation of an unseen character
to correctly classify and generate new examples [115]. Having learned the rules
of grammar or the hierarchical organization of biological species, people can easily
generalize from sparse data, like forming the plural of a novel word or inferring from
the fact that ’jays are birds’ that ’jays are animals’ and that ’jays are not mammals’.

Acquiring internal representations that incorporate such domain-specific structures
is possible with abstract algorithmic models in machine learning and artificial in-
telligence, like model-based reinforcement learning [8, 116] hierarchical Bayesian
methods [115, 117] or inductive logic programming [118]. It is, in general, not
straightforward to translate these models into neural implementations, but for the
specific case of learning maps of the environment, there are interesting propositions
[119, 120, 71, 121, 122, 123, 124, 125] that could serve to learn the different routes
in the traffic jam example and potentially also the expectations about durations of
traffic jams, e.g. with models inspired by dynamic programming [125].

We as computational neuroscientists should aim for an explanation of one-shot learn-
ing or the acquisition of internal representations that are tightly constrained by
both behavioural and physiological data. Currently it seems out of reach to ob-
tain suitable physiological data from humans. But impressive learning behaviour
is also observed in food-storing animals [126, 127, 128, 129]. Westerns scrub-jays
encounter a problem very similar to the one in the traffic-jam example: they hide
different types of food at different places in their environment, and update their
search behaviour based on their expectations about the perishability rates of the
different types of food [130]. Furthermore, they were observed to be rule learners in
simple matching and oddity tasks [131], they use transitive inference to predict so-
cial dominance [132] and re-cache hidden food to prevent pilfering, by remembering
which individual watched them during particular caching events [133].

In summary, one-shot learning and the acquisition of internal representations for
flexible planning do not yet seem to be satisfactorily explained by the dominant
paradigms of learning in computational neuroscience. To make progress in our
understanding of such flexible learning behaviour, abstract models on an algorithmic
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level could give hints for novel models of synaptic learning that then, in turn, need
to be constrained by physiological and behavioural data.
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[109] M. Päpper, R. Kempter, and C. Leibold. Synaptic tagging, evaluation of memories,
and the distal reward problem. Learn. Mem., 18:58–70, 2011.

[110] Y. Amit and Y. Huang. Precise Capacity Analysis in Binary Networks with Multiple
Coding Level Inputs. Neural Comput, 22:660–688, 2010.

[111] T. Elliott. Discrete States of Synaptic Strength in a Stochastic Model of Spike-
Timing-Dependent Plasticity. Neural Comput, 22:244–272, 2010.

[112] D. Sheynikhovich, R. Chavarriaga, T. Strosslin, A. Arleo, and W. Gerstner. Is there
a geometric module for spatial orientation? insights from a rodent navigation model.
Psychological Review, 116:540–566, 2009.

[113] M. Franzius, H. Sprekeler and L. Wiskott. Slowness and sparseness lead to place,
head-direction, and spatial-view cells. PLoS Comput. Biol. 3:e166, 2007.

[114] J. O’Keefe and J. Dostrovsky. The hippocampus as a spatial map. Preliminary
evidence from unit activity in the freely-moving rat. Brain research, 34:171–5, 1971.

[115] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning
through probabilistic program induction. Sciencee, 350:1332–1338, 2015.

* Reports one-shot learning of handwritten characters by humans.

[116] A. Guez, D. Silver, and P. Dayan. Scalable and efficient bayes-adaptive reinforce-
ment learning based on Monte-Carlo tree search. Journal of Artificial Intelligence
Research, 48:841–883, 2013.

[117] C. Kemp and J. B. Tenenbaum. The discovery of structural form. Proceedings of
the National Academy of Sciences of the United States of America, 105:10687–92,
2008.

* A Bayesian approach to discover structure and form in data that shows
similarities with how scientists and children discover forms like hierar-
chies, cliques or relations.

[118] S. Muggleton and L. de Raedt. Inductive logic programming: theory and methods.
Journal of Logic Programming, 19:629–679, 1994.

13



[119] K. Blum and L. Abbott. A model of spatial map formation in the hippocampus of
the rat. Neural Comput., 8:85–93, 1996.

[120] W. Gerstner and L. F. Abbott. Learning navigational maps through potentiation
and modulation of hippocampal place cells. J. Comput. Neurosci., 4:79–94, 1997.

[121] K. L. Stachenfeld, M. M. Botvinick, and S. J. Gershman. Design Principles of the
Hippocampal Cognitive Map. Advances in Neural Information Processing Systems
27, pages 1–9, 2014.

[122] D. S. Corneil and W. Gerstner. Attractor Network Dynamics Enable Preplay and
Rapid Path Planning in Mazelike Environments. Advances in Neural Information
Processing Systems 28, pages 1675–1683, 2015.

[123] M. J. Milford, G. F. Wyeth, and D. Prasser. RatSLAM: A Hippocampal Model for
Simultaneous Localization and Mapping. Proceeding of the 2004 IEEE international
Conference on Robotics & Automation, pages 403–408, 2004.

[124] W. D. Penny, P. Zeidman, and N. Burgess. Forward and Backward Inference in
Spatial Cognition. PLoS Computational Biology, 9:e1003383, 2013.

[125] J. Friedrich and M. Lengyel. Goal-Directed Decision Making with Spiking Neurons.
Journal of Neuroscience, 36:1529–1546, 2016.

* A spiking neural network model of learning a representation of the
world and using it for planning.

[126] S. B. Vander Wall. Food Hoarding in Animals. Chicago: University of Chicago
Press., 1990.

[127] D. W. Macdonald. Food Caching by Red Foxes and Some Other Carnivores.
Zeitschrift für Tierpsychologie, 42:170–185, 1976.

[128] N. S. Clayton and J. R. Krebs. Memory for spatial and object-specific cues in food-
storing and non-storing birds. Journal of Comparative Physiology A, 174:371–379,
1994.

[129] N. S. Clayton and N. J. Emery. Avian Models for Human Cognitive Neuroscience:
A Proposal. Neuron, 86:1330–1342, 2015.

** reviews the fascinating learning abilities of corvids and other birds.

[130] N. S. Clayton, K. S. Yu, and A. Dickinson. Interacting Cache memories: evidence
for flexible memory use by Western Scrub-Jays (Aphelocoma californica). Journal
of experimental psychology. Animal behavior processes, 29:14–22, 2003.

[131] B. Wilson, N. J. Mackintosh, and R. A. Boakes. Transfer of relational rules in
matching and oddity learning by pigeons and corvids. The Quarterly Journal of
Experimental Psychology Section B, 37:313–332, 1985.

[132] C. G. Paz-y Miño, A. B. Bond, A. C. Kamil, and R. P. Balda. Pinyon jays use
transitive inference to predict social dominance. Nature, 430:778–781, 2004.

[133] J. M. Dally, N. J. Emery, and N. S. Clayton. Food-caching western scrub-jays keep
track of who was watching when. Science, 312:1662–1665, 2006.

14


