Evaluation Metrics
struct AllRewards <: AbstractEvaluationMetrics
rewards::Array{Float64, 1}Records all rewards.
TabularReinforcementLearning.AllRewards — Method.AllRewards()Initializes with empty array.
EvaluationPerEpisode <: AbstractEvaluationMetrics
values::Array{Float64, 1}
metric::SimpleEvaluationMetricStores the value of the simple metric for each episode in values.
EvaluationPerEpisode(metric = MeanReward())Initializes with empty values array and simple metric (default MeanReward). Other options are TimeSteps (to measure the lengths of episodes) or TotalReward.
EvaluationPerT <: AbstractEvaluationMetrics
T::Int64
counter::Int64
values::Array{Float64, 1}
metric::SimpleEvaluationMetricStores the value of the simple metric after every T steps in values.
EvaluationPerT(T, metric = MeanReward())Initializes with T, counter = 0, empty values array and simple metric (default MeanReward). Another option is TotalReward.
mutable struct MeanReward <: TabularReinforcementLearning.SimpleEvaluationMetric
meanreward::Float64
counter::Int64Computes iteratively the mean reward.
TabularReinforcementLearning.MeanReward — Method.MeanReward()Initializes counter and meanreward to 0.
struct RecordAll <: AbstractEvaluationMetrics
r::Array{Float64, 1}
a::Array{Int64, 1}
s::Array{Int64, 1}
isterminal::Array{Bool, 1}Records everything.
TabularReinforcementLearning.RecordAll — Method.RecordAll()Initializes with empty arrays.
mutable struct TimeSteps <: SimpleEvaluationMetric
counter::Int64Counts the number of timesteps the simulation is running.
TabularReinforcementLearning.TimeSteps — Method.TimeSteps()Initializes counter to 0.
mutable struct TotalReward <: TabularReinforcementLearning.SimpleEvaluationMetric
reward::Float64Accumulates all rewards.
TabularReinforcementLearning.TotalReward — Method.TotalReward()Initializes reward to 0.